PROJECT NARRATIVE & STORMWATER REPORT

For the Proposed:

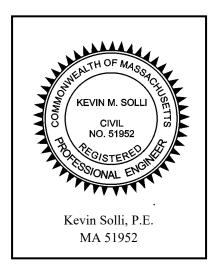
COFFEE SHOP REDEVELOPMENT

Located At: 788 Main Street Holden, Massachusetts

> Prepared On: October 6, 2023 Revised on: February 9th, 2024

Prepared For: Town of Holden

Prepared By:



11 Vanderbilt Avenue, Suite 240 Norwood, Massachusetts 02062 T: (781) 352-8491

Prepared For:

DDMNS Realty

160 West Boulevard, Unit C West Springfield, Massachusetts 01089 T: (413) 313-5067

TABLE OF CONTENTS

INTRODUCTION	4
EXISTING CONDITIONS	4
PROJECT SITE	4
SITE LOCATION	4
SITE CHARACTERISTICS	4
REGULATED AREAS	4
FEMA FLOODPLAIN	4
ENDANGERED AND RARE SPECIES PROTECTION AREA	4
WELLHEAD PROTECTION AREA	5
SURFACE WATER PROTECTION AREA	5
WETLAND RESOURCE AREAS	5
ZONING ASSESSMENT	5
COMMERCIAL ZONING DISTRICT	5
PARKING REGULATIONS	5
PROPOSED CONDITIONS	5
PROJECT DESCRIPTION	5
SITE ACCESS / EGRESS	6
PARKING, LOADING & OPERATIONS	6
STORMWATER MANAGEMENT	7
SITE UTILITIES	7
WATER	7
SANITARY	7
ELECTRIC / CABLE / TELECOMMUNICATIONS	8
SITE LANDSCAPING & LIGHTING	8
STORMWATER MANAGEMENT & SOIL EROSION CONTROL	9
METHODOLOGY	9
STANDARD 1: DISCHARGE PROTECTION	
STANDARD 2: ATTENUATION	
EXISTING CONDITIONS	
PROPOSED CONDITIONS	
STANDARD 3: RECHARGE	
STANDARD 4: WATER QUALITY	14
STANDARD 5: POLLUTION PREVENTION	
STANDARD 6: ZONE II / WELLHEAD PROTECTION AREA	
STANDARD 7: REDEVELOPMENT PROJECT	15
STANDARD 8: SOIL EROSION & SEDIMENT CONTROL	
STANDARD 9: LONG-TERM OPERATION & MAINTENANCE PLAN	16
STANDARD 10: ILLICIT DISCHARGES	

LIST OF TABLES & CALCULATIONS

Table 1: Commercial Zoning District Dimensional Requirements	. 5
Table 2: Proposed Parking Summary	.6
Table 3: Sewer Flow Design	. 8
Table 4: Grease Trap Flow Design	. 8
Table 5: Rainfall Data	.9
Table 6: IDF Table	.9
Riprap Apron Calculations	10
Table 7: Existing Drainage Areas	11
Table 8: Proposed Drainage Areas	11
Table 9: Peak Flow Reduction Table	12
Table 10: UG Stormwater System	13
Required Recharge Volume Calculations	13
Adjusted Minimum Required Recharge Volume Calculations	13
Drawdown Calculations	14
Water Quality Treatment Volume	14

Proposed Coffee Shop Redevelopment 788 Main Street Holden, Massachusetts 01520

APPENDICES

APPENDIX A: FIGURES

Site Location Map (Figure 1) Soil Survey Map (Figure 2) FEMA Flood Map (Figure 3) Endangered and Rare Species Map (Figure 4) Wellhead Protection Map (Figure 5) Surface Water Protection Map (Figure 6)

<u>APPENDIX B</u>: SUPPORTING DOCUMENTS

Property Card Boring Logs & Plan Prepared by Environmental Risk Advisors, LLC Illicit Discharge Statement Prepared by Solli Engineering, LLC

<u>APPENDIX C</u>: STORMWATER CALCULATIONS

Hydrology Calculations (2-, 10-, 25-, 50-, 100-year storm events) NOAA Atlas Precipitation Data Watershed Model Schematic HydroCAD Reporting
Hydraulic Calculations (25-year storm event)

Storm Sewer Model Schematic & Reporting Hydraulic Profiles

Best Management Practices

WQV Calculation Worksheet TSS Calculation Worksheets MassDEP Treatment Train Worksheets

<u>APPENDIX D</u>: DETAILED DESIGN PLANS

Existing Conditions Plan Prepared by Northeast Survey Consultants Drainage Area Map (DA-1) Catch Basin Drainage Area Map (CBDA-1) For more information regarding the Design Plans refer to the Permitting Plan Set, prepared by Solli Engineering, submitted in conjunction with this Report.

APPENDIX E: LONG-TERM OPERATION & MAINTENANCE Operation & Maintenance Manual

INTRODUCTION

Solli Engineering (Solli) has prepared this Project Narrative & Stormwater Report (Report) to provide an analysis of the zoning regulations, stormwater management, utility design and coordination, soil erosion and sediment control measures, and subsurface conditions for the proposed Coffee Shop Redevelopment located at 788 Main Street in Holden, Massachusetts. The proposed redevelopment has been designed in compliance with the Town of Holden Zoning Bylaw, the Town of Holden Stormwater Rules & Regulations, the Massachusetts Stormwater Handbook updated February 2008, as well as all other applicable state and federal requirements and regulations.

EXISTING CONDITIONS

PROJECT SITE

SITE LOCATION

The "Project Site" (Site) is at 788 Main Street (Route 122A) that consists of a $0.715\pm$ acre parcel situated along the northern corridor of Main Street within the Commercial (C) Zoning District of the Town of Holden, Massachusetts. The Site is bound by Main Street to the south, commercially developed properties to the east and west, and undeveloped land to the north. The Site is currently improved by a retail shop and parking lot. The Site is accessible off Main Street (Route 122A) via a 30' wide curb cut. For more information regarding the existing site location and site access refer to Appendix A, Figure 1 - Site Location, and Existing Conditions Plan, Appendix D.

SITE CHARACTERISTICS

The Site is improved with paved parking areas, drive aisles, retaining walls, landscape islands, utility structures, and stormwater structures to support the existing retail shop. The Site contains minimal stormwater management systems and majority of the Site's stormwater sheet flows off-site. An existing dry-well structure is located within the front parking area that captures a portion of the Site's stormwater runoff. Elevations range within the Site from approximately 716' to 727'.

According to soil survey mapping, obtained from the Natural Resource Conservation Service (NRCS), the surface soils on the Site include "Udorthents" and "Walpole Sandy Loam". Udorthents do not have a specified hydrologic soil rating. Walpole sandy loam soils have a hydraulic soil rating of B/D. For more information regarding the surface soil conditions of the Site, refer to Appendix A, Figure 2 - Soil Survey Map.

REGULATED AREAS

FEMA FLOODPLAIN

According to FEMA Flood Insurance Rate Map, Map Number 2503090015B, effective date 07/02/1981, the Site is not located within an area of flood hazard. For more information regarding the FEMA floodplains refer to Appendix A, Figure 3 - FEMA Flood Map.

ENDANGERED AND RARE SPECIES PROTECTION AREA

According to online mapping provided from the Massachusetts Department of Environmental Protection (MassDEP) ArcGIS Endangered and Rare Species Protection areas, the Site is not located with a Endangered and Rare Species Protection Area. For more information, refer to Appendix A, Figure 4 – Endangered and Rare Species Protection Map.

WELLHEAD PROTECTION AREA

According to online mapping provided from the Massachusetts Department of Environmental Protection (MassDEP) ArcGIS Wellhead Protection areas, the Site is not located within a Zone I or II Wellhead Protection Area. For more information, refer to Appendix A, Figure 5 – Wellhead Protection Map.

SURFACE WATER PROTECTION AREA

According to online mapping provided from the Massachusetts Department of Environmental Protection (MassDEP) ArcGIS Surface Water Protection areas, the Site is located within a Zone A Surface Water Protection Area of the Wachusett Reservoir. For more information, refer to Appendix A, Figure 6 – Surface Water Protection Area Map.

WETLAND RESOURCE AREAS

According to the State of Massachusetts' Geographical Information System (MassMapper), to the north of the property a hydrologic connection exists. Based on field verification / observations made by the Applicant's representatives as well as the Town of Holden Conservation Agent, an intermittent stream and surrounding bordering vegetative wetlands (BVW) exists approximately 75' to the north of the rear property line.

ZONING ASSESSMENT

As shown in the Town of Holden, Massachusetts' Zoning Map, the Site is located within the Commercial (C) Zoning District. The Site is bound by similarly zoned properties to the north, south, east, and west.

COMMERCIAL ZONING DISTRICT

All developments within the C Zoning District are required to comply with the dimensional requirements set forth in Chapter 7.1 Section 6 – Area, Heigh and Bulk Regulations within the Town of Holden Zoning Regulations. The C Zoning District dimensional requirements are provided below:

Zoning District	Min. Lot Area	Min. Lot Width	Min. Lot Frontage	Min. Front Yard	Min. Side Yard	Min. Rear Yard	Min. Front Yard Landscape	Min. Side and Rear Landscape	Max. Building Height	Max. FAR
С	10,000 SF	80 ft	64 ft	30 ft	15 ft	15 ft	15 ft	5ft	30 ft	50 %

Table 1: Commercial Zoning District Dimensional Requirements

PARKING REGULATIONS

According to Chapter 7.1 Section 8 – Parking and Loading Regulations, of the Town of Holden Zoning Regulations, the parking requirement for a restaurant use is 1 space per 4 seats.

PROPOSED CONDITIONS

PROJECT DESCRIPTION

The Applicant, DDMNS Realty, LLC, is proposing to construct a $2,410\pm$ square foot, slab on grade, coffee shop with a drive-through with both interior and exterior seating, located at 788 Main Street (Route 122A) in Holden, Massachusetts. The construction will include various site improvements including associated parking, drives, drainage, utilities, landscaping, and lighting features to support the proposed use.

SITE ACCESS / EGRESS

The redevelopment proposes a 30-foot-wide driveway off Main Street (Route 122A) in the general location of the existing driveway. The driveway has been designed with a 12-foot-wide access lane and two (2) 9-foot-wide dedicated left and right turn egress lanes. Traffic signage and painted markings are proposed throughout the Site to improve traffic flow and vehicular safety.

PARKING, LOADING & OPERATIONS

The project proposes the construction of a $2,410\pm$ square foot, slab on grade, coffee shop. The proposed redevelopment includes the construction of a drive-through stacking lane and associated by-pass lane, drive-through window, dumpster pad, and enclosure and various parking improvements to support the proposed use. The project proposes minor off-parcel improvements to better accommodate the proposed flow of traffic, parking, and operations.

The redevelopment proposes a 24-foot-wide drive aisle within the parking area to the east of the building. The proposed drive-through entrance is at the northeast corner of the Site and includes a 12-foot-wide drive-through stacking lane and a 10-foot-wide emergency by-pass lane. A clearance bar, pre-order menu, digital order screen with canopy, and menu board are proposed to be installed adjacent to the drive-through. Painted traffic arrows are proposed throughout the site to improve traffic flow and vehicular safety. Stop signs and stop bars have been proposed at the exit of the drive-through to improve traffic flow and safety.

The project proposes a $450\pm$ square-foot concrete patio and outdoor seating area along the western side of the building. In addition to the outdoor seating area, three (3) time-limited, curb side parking spaces are proposed adjacent to the patio. These spaces will be utilized by customers using mobile ordering and larger drive-through purchases.

The redevelopment proposes a total of twenty-three (23) parking spaces and two (2) bicycle racks. The bicycle racks are proposed along the Main Street (Route 122A) frontage providing connectivity to the Main Street (Route 122A) sidewalks. Refer to Table 2 below for more information regarding the proposed parking summary.

Proposed Development	GSF / Seats	Town Minimum Parking Requirement	Town Maximum Parking Requirement	Required	Proposed
Coffee Shop	2, 410 SF / 62 Seats	1 Space / 4 Seats	1 Space / 4 Seats	16 Spaces	23 Spaces
	Total			16 Spaces	23 Spaces

Table 2: Proposed Parking Summary

*For more information refer to the Site Layout Plan (Sheet 2.11) located within the Permitting Plan Set, submitted in conjunction with this Report.

The coffee shop's parking spaces have been designed with a width of 9-feet and a depth of 18-feet consistent with industry standards. Two (2) ADA accessible parking spaces (1 standard and 1 van space) are proposed adjacent to the coffee shop's front doors. The ADA accessible parking spaces are accompanied by a shared designated loading area. The proposed parking spaces have been designed to provide efficient and adequate access to all of the proposed building entrances. The project proposes a concrete dumpster pad with a chain link fence enclosure at the end of the front drive aisle.

For more information regarding the proposed site work and improvements associated with the outparcel redevelopment refer to the Site Layout Plan (Sheet 2.11) located within the Permitting Plan Set, submitted in conjunction with this Report.

STORMWATER MANAGEMENT

The redevelopment of the Site proposes an increase to the overall impervious area of the existing development by approximately $2,360\pm$ square feet. To mitigate the increase in impervious area and manage the stormwater runoff, the Site has been designed with a subsurface infiltration system. The proposed stormwater conveyance system consists of a series of catch basins with 4-foot sumps and hooded outlets, manholes, two (2) water quality units, and said subsurface infiltration system. The on-site hydraulic system has been analyzed for the 25-year storm event without surcharging the proposed structure's rim/grate.

The underground stormwater system has been designed as a 3.5-foot concrete chamber system with a total storage volume of $1,598\pm$ cubic feet. The system has been designed with an outlet riser that controls the rate of runoff and also provides a recharge volume of $936\pm$ cubic feet. The proposed stormwater management system has been designed in accordance with the Massachusetts Stormwater Handbook, updated February 2008, and Section 3.0 – Stormwater Management and Erosion Control of the Town of Holden Stormwater Management Rules and Regulations. Refer to the Stormwater Management & Soil Erosion Control section of this Report for more details regarding the proposed best management practices and drainage features being implemented as part of this project.

SITE UTILITIES

WATER

The water provider for this property is the Town of Holden Water Department. The existing property has a 1" plastic water service off an existing 10-inch water main located within the eastbound lane of Main Street (122A). The proposed coffee shop requires a 2-inch domestic water service and proposes to tap the 10-inch water main in the general vicinity of the existing service. The tap and installation shall be performed in accordance with the Town of Holden Water Department standards and requirements.

The building is proposed to be 2,410 square feet and will not need an automatic sprinkler system; under the Massachusetts General Laws any building totaling more than 7,500 gross square feet is required to have an automatic sprinkler system. The Site is within proximity to one (1) existing fire hydrant, located to the west of the Site.

For more information pertaining to the proposed utility layout refer to the Grading, Drainage and Utility Plan (Sheet 2.21) within the Permitting Plan Set, submitted in conjunction with this Report.

SANITARY

The sanitary sewer provider in the Town of Holden is the Town of Holden Water Department. When the 8" sewer main was installed within Main Street (Route 122A) a 6" PVC lateral was capped at the property line for the property. The project proposes to utilize the existing sewer stub assuming the integrity of the lateral is in the operating condition. In accordance with tenant specifications, the coffee shop's sanitary system has been designed with 4-inch and 6-inch PVC laterals; one for kitchen waste and the other for domestic effluent. The kitchen waste lateral is proposed to convey effluent towards a 1,500-gallon grease tank to facilitate the settling of fats, oils, and grease. The outlet of the grease tank and the domestic sanitary lateral are proposed to combine within the sewer manhole. From this manhole the effluent will convey through a 6" gravity main towards Main Street (Route 122A) and connect to the existing sewer main through a manhole. The conditions of the proposed discharge location are unknown and in accordance with the Town of Holden upgrades to the existing structure may be required.

In accordance with rates taken from the Massachusetts Department of Environmental Protection 310 CMR 15.000, the proposed coffee shop is expected to generate approximately 1,240 gallons per day of domestic effluent and the grease trap is to be sized with a minimum capacity of 930 gallons. Tenant specifications require a grease trap of 1,500 gallons.

Type of Establishment	Total Square Footage / Seats	Unit	Gallons Per Day Per Unit	Total Gallons Per Day
Coffee Shop (Fast-Food)	2,410 SF / 62 Seats	1 Seat	20 GPD	1,240 GPD
			Total	1,240 GPD

Table 3: Sewer Flow Design

Type of Establishment	Total Square Footage / Seats	Unit	Gallons Per Day Per Unit	Total Gallons Per Day	Recommended Grease Trap Size
Coffee Shop (Fast-Food)	2,410 SF / 62 Seats	1 Seat	15 GPD	930 GPD	1,500 Gallons

For more information pertaining to the proposed utility layout refer to the Grading, Drainage and Utility Plan (Sheet 2.21) within the Permitting Plan Set, submitted in conjunction with this Report.

ELECTRIC / CABLE / TELECOMMUNICATIONS

The electric provider in this location is Holden Municipal Light Plan (HMLP). In accordance with tenant specifications, the coffee shop requires a 600-amp, 208/120 volt, 3 phase, 4 wire service. In coordination with HMLP, the electrical service will be provided via a pad mounted transformer on the parcel. Electrical service will be provided to the building via underground electrical conduit. Prior to construction the Site general contractor will coordinate with the utility provider to confirm the preliminary design and service connection, if any upgrades to the existing service are required the civil engineer of record will be contacted.

The project proposes cable and telecommunications to be fed underground from telecommunication manhole #1006, located along Main Street (Route 122A). The cable and telecommunications service will tie into the rear of the building in the location of the electrical meter. At this point of design, it is assumed that cable and telecommunications can be fed from the same manhole located along Main Street (State Route 122A). Prior to construction, detailed conduit plans will be designed in accordance with utility providers standards and requirements following approvals from the Town of Holden.

For more information pertaining to the proposed utility layout refer to the Grading, Drainage and Utility Plan (Sheet 2.21) within the Permitting Plan Set, submitted in conjunction with this Report.

SITE LANDSCAPING & LIGHTING

A comprehensive landscape plan has been provided. The proposed landscaping improvements include a variety of native species containing trees, shrubs, ground cover, and seed mixes. The landscaping plan has been designed to provide vegetative screening surrounding the dumpster enclosure and provide as much shade within the proposed parking areas as possible. The landscape plan has been designed in compliance with Chapter 7.1 Section 8 of the Town of Holden Zoning Bylaws.

The proposed Site lighting plan is comprised of pole-mounted light fixtures, wall-mounted building lights, and canopy lights. The proposed wall-mounted building lights and canopy lights are consistent with prototypical light fixtures for a coffee shop. All fixtures are proposed to be LED and meet "dark sky" principles. The Lighting Plan has been designed to ensure the Site has adequate light levels within parking areas, sidewalks, pedestrian areas, and in the area of the drive-through.

For more information pertaining to the landscape and lighting for the Site refer to the Landscape Plan (Sheet 2.61) and Lighting Plan (Sheet 2.71) within the Permitting Plan Set, submitted in conjunction with this Report.

STORMWATER MANAGEMENT & SOIL EROSION CONTROL

The Stormwater Management & Soil Erosion Control section of this Report has been designed for the proposed commercial redevelopment located on 788 Main Street (Route 122A) in Holden, Massachusetts. This section is intended to be in compliance with the Massachusetts Stormwater Handbook, updated February 2008, and Town of Holden Stormwater Management Rules and Regulations. The project was designed to meet the stormwater management standards and best management practices defined in the Massachusetts Stormwater Handbook, while taking prevailing site conditions and practical considerations into account.

METHODOLOGY

Stormwater runoff analysis, for both existing and proposed conditions, was performed using the software package HydroCAD. This software uses a computer implementation of the SCS / NRCS – TR-55 methodology to compute volumes and rates of runoff. The watershed area, rainfall depths and intensity, curve number, and time of concentration are factors that influence the computed results.

Rainfall depths for the Site were used for calculating the volumes and rates of runoff for this project. The depths were taken from the NOAA Atlas documents (Latitude: 42.3423°, Longitude: -71.8442°) and the rainfall values are listed in Table 5 below.

l able 5: Kaintali Data					
Return Period (Storm Event)	24-hr Rainfall Depth (inches)				
2-Year	3.18				
10-Year	4.89				
25-Year	5.96				
50-Year	6.75				
100-Year	7.60				

Table 5: Rainfall Data

HydroCAD automatically computes the rainfall intensity from its own IDF curves when the rainfall intensity data is provided. This information was taken from the NOAA Atlas documents (Latitude: 42.3423°, Longitude: -71.8442°) and the rainfall values are listed in Table 6 below.

Table 6: IDF Table						
Intermediate Intensity Values (in/hr)						
Return Period (Storm Event)	5-Minute	15-Minute	30-Minute	60-Minute		
2-Year	4.85	2.70	1.82	1.14		
10-Year	6.91	3.84	2.60	1.64		
25-Year	8.20	4.56	3.08	1.94		
50-Year	9.17	5.10	3.45	2.18		
100-Year	10.2	5.66	3.83	2.42		

SCS / NRCS uses the runoff curve number (CN) method to estimate runoff from storm rainfall. The major factors that determine CN are the watershed's soil and cover conditions, cover type, treatment, and hydrologic condition. The higher percentage of impervious cover within a watershed will result in a higher curve number. A composite curve number was calculated for each analyzed watershed. Refer to Appendix C for the calculations used in determining the existing and proposed curve numbers, for the individual drainage areas.

The time of concentration is the time it takes for runoff to travel from the hydraulically most distant point of the watershed to a point of interest within the watershed. The time of concentration is calculated by adding the travel times of sheet flow, shallow concentrated flow, and open channel flow, or some combination of these depending on the watershed and its features. Refer to Appendix C for the calculations used in determining the existing and proposed time of concentrations, for the individual drainage areas.

STANDARD 1: DISCHARGE PROTECTION

No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The project proposes a single discharge outfall in the rear of the Site. The outfall proposes to discharge **treated** stormwater with appropriate apron protection to avoid erosion at such location. The proposed riprap apron / splash pad has been designed in accordance with the U.S. Department of Transportation Hydraulic Design of Energy Dissipators for Culverts and Channels. For more information refer to the Riprap Apron Calculations provided below:

Riprap Apron Calculations

$$D_{50} = 0.2D \left(\frac{q}{\sqrt{g}D^{2.5}}\right)^{4/3} * \frac{D}{TW}$$

$$D_{50} = Riprap Size (ft)$$

$$D = Culvert Diameter (ft)$$

$$Q = Design Discharge \left(\frac{ft^3}{s}\right)(25 - year \ storm \ event)$$

$$g = Acceleration \ due \ to \ Gravity \ \left(\frac{32.2 \ ft}{s^2}\right)$$

$$TW = Tailwater \ Depth \ (ft), \ if \ unknown \ use \ 0.4D$$

Outlet	Culvert Diameter (D)	Design Discharge (Q)	Tailwater Depth (TW)	Riprap Size (D ₅₀)	Riprap Class	Apron Length (4D)	Apron Depth (3.5D ₅₀)
#1	1 ft	3.31 cfs	0.4 ft	0.244 ft / 5 inches (min.)	Class 1	4 ft	17.5 inches

STANDARD 2: ATTENUATION

Stormwater management systems shall be designed so that the post-development peak discharge rates do not exceed pre-development peak discharge rates.

EXISTING CONDITIONS

The Site currently drains away from Main Street (Route 122A) towards the rear of the parcel from south to north. The Site contains minimal stormwater management systems and majority of the Site's stormwater sheet flows off-site. An existing dry-well structure is located within the front parking area that captures a portion of the Site's stormwater runoff. Elevations range within the Site from approximately 716' to 727'.

Approximately $0.77\pm$ acres of the Site and surrounding areas were analyzed for stormwater management purposes. The areas analyzed contain the contributing areas directly impacted by the proposed redevelopment. Based on existing drainage patterns, the 0.77-acre area was divided into two (2) contributing drainage areas, labeled Existing Drainage Area 1 (EDA-1) and Existing Drainage Area 2 (EDA-2).

EDA-1 has a contributing drainage area of approximately 0.59 acres. The majority of the runoff from EDA-1 sheet flows north away from the existing building towards the northern property line. A majority of the area is improved with drive aisles and parking areas. EDA-1 contains no existing stormwater infrastructure and for the purposes of the analysis an assumed overland discharge location was chosen. EDA-2 has a contributing drainage area of approximately 0.18 acres. The runoff from EDA-2 is captured by a dry-well structure. The dry-well structure is located southeastern region of the Site. The conditions of the existing structure are currently unknown.

Drainage Area Label	Drainage Area	Curve Number	Time of Concentration			
Existing Drainage Area 1 (EDA-1)	0.59 AC	83	6.0 Mins.			
Existing Drainage Area 2 (EDA-2)	0.18 AC	93	6.0 Mins.			
		-	-			
Total	0.77 AC	-	-			

For more information regarding the existing drainage conditions of the Site refer to the Drainage Area Map (DA-1) within Appendix D of this Report.

PROPOSED CONDITIONS

The Site, in existing conditions, contains limited stormwater management structures and no stormwater management system. The redevelopment proposes to convey stormwater runoff through a underground infiltration system that will allow runoff to infiltrate and attenuate prior to overflowing to a proposed headwall discharge point in the rear of the site with a riprap splashpad to dissipate anticipated flows. Dissipated runoff from the headwall discharge is proposed to flow off site and mimic existing drainage patterns. Based on the proposed grading of the redevelopment, the 0.77-acre area was divided into two (2) contributing drainage areas labeled Proposed Drainage Area 1 (PDA-1) and Proposed Drainage Area 2 (PDA-2).

PDA-1 has a contributing drainage area of approximately 0.63 acres and was divided into two (2) subdrainage areas, labeled Proposed Drainage Area 1A (PDA-1A) and Proposed Drainage Area 1B (PDA-1B). PDA-1A has a contributing drainage area of approximately 0.44 acres. The contributing drainage area of PDA-1A is majority of the drive-thru lanes, drive aisles, parking, and grass areas. PDA-1B has a contributing drainage area of approximately 0.19 acres. The contributing drainage area of PDA-1B is the proposed coffee shop roof, a portion of the drive-thru lanes, parking area, and driveway. The runoff will be captured by proposed drainage structures and conveyed to the Site's underground stormwater management system. Mimicking existing conditions, the runoff from PDA-1A and PDA-1B eventually discharge to the northern side of the Site, into the proposed rip-rap splash pad.

PDA-2 has a contributing drainage area of approximately 0.14 acres. The contributing drainage area of PDA-2 is grass areas and a portion of the driveway. The runoff will mimic existing conditions, and will eventually be captured by Main Street (Route 122A) conveyance system.

Drainage Area Label	Drainage Area	Curve Number	Time of Concentration
Proposed Drainage Area 1 (PDA-1)	0.630 AC	-	-
Proposed Drainage Area 1A (PDA-1A)	0.440 AC	89	6.0 Mins.
Proposed Drainage Area 1B (PDA-1B)	0.190 AC	96	6.0 Mins.
Proposed Drainage Area 2 (PDA-2)	0.14 AC	75	6.0 Mins.
Total	0.770 AC	-	_

Table 8: Proposed Drainage Areas

For more information regarding the proposed drainage conditions of the Site refer to the Drainage Area Map (DA-1) within Appendix D of this Report.

The project will result in an increase of impervious area, from that of existing conditions, by approximately $2,360\pm$ square feet. The proposed stormwater management system will attenuate and infiltrate the stormwater runoff associated with a majority of the outparcel and provide a reduction in peak flow rate compared to existing conditions in the 2-, 10-, 25-, 50- and 100-year storm events. Refer to Table 9 for the peak flow comparison between existing and proposed hydrologic conditions.

	Peak Flow (cfs)				
Storm	Total Dra	Total Drainage Areas Percent R			
Event	EDA	PDA	in Peak Flow		
2-Year	1.56	1.21	22.4%		
10-Year	4.22	3.80	10.0%		
25-Year	5.42	4.93	9.0%		
50-Year	6.31	5.88	6.8%		
100-Year	7.26	7.23	0.4%		

Table 9:	Peak Flow	Reduction	Table
\mathbf{I} and \mathbf{V} .	I Can I ION	neutron	Lanc

Refer to Appendix C for more information regarding the drainage areas and hydrologic analysis of the pre- and post-development Site conditions.

The proposed subsurface stormwater management system has been designed to attenuate the peak discharge rates for the 2-, 10-, 25-, 50- and 100-year storm events The underground stormwater system has been designed as a 3.5-foot concrete chamber system with a total storage volume of $1,598\pm$ cubic feet. For more information pertaining to the proposed stormwater system refer to the Grading, and Drainage Plan (Sheet 2.21) within the Permitting Plan Set, submitted in conjunction with this Report.

STANDARD 3: RECHARGE

At a minimum, the annual recharge from post-development site shall be approximate the same as the annual recharge from pre-development conditions based on soil type. This is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

According to soil survey mapping, obtained from the Natural Resource Conservation Service (NRCS), the surface soils on the Site include "Udorthents" and "Walpole Sandy Loam". Udorthents does not have a specified hydrologic soil rating, but the site is surrounded by soils with Hydrologic Soil Group (HSG) A. Walpole Sandy Loam has Hydrologic Soil Group of B/D.

In July 2023, the Applicant performed a complete environmental assessment of the Site and had five (5) borings performed throughout the Site. The borings observed soil horizons of a top layer of Human Transported Material (HTM), above layers of fine to medium sand, above layers of silty sand and gravel. The borings observed groundwater elevations were consistent throughout the Site between 9' and 10' below ground surface (approximate elevation of 714'). For the purposes of analysis, it has been assumed that the underlying soils on-site have a hydrologic rating of "B" with an approximate infiltration rate of 0.52 inches / hour in accordance with the 1982 Rawl's Rates (loam). In Solli's professional opinion, the utilized infiltration rate and hydrologic rating is consistent with the soils observed on-site.

The redevelopment Site will provide approximately $21,960\pm$ square feet of impervious surfaces. The overall Site redevelopment results in an increase of $2,360\pm$ square feet in the overall impervious areas of the Site.

To mitigate the increase in impervious area and manage the stormwater runoff, the redevelopment has been designed with a subsurface infiltration system. The underground stormwater system has been designed as a 3.5-foot concrete chamber system with a total storage volume of $1,598\pm$ cubic feet. The system has been designed with an outlet riser that controls the rate of runoff and also provides the site with the required recharge volume of $936\pm$ cubic feet.

	1 abic 10. 00 5to	i ili water Systen	
Storm Event	Maximum Elevation (ft)	Maximum Storage (cf)	Peak Discharge (cfs)
2-yr	721.62	1,010	0.10
10-yr	722.30	1,300	0.74
25-yr	722.71	1,473	0.96
50-yr	722.86	1,538	1.35
100-yr	722.95	1,577	1.99

Table	10:	UG	Stormwater	System
-------	-----	----	------------	--------

As previously mentioned, the underground stormwater management system has a total storage volume of capacity of $1,598\pm$ cubic feet and a total recharge volume of $936\pm$ cubic feet. The recharge volume is the capacity beneath the outlet allowing the stormwater to recharge back into the ground. See below for the required recharge volume calculations. For more information regarding the subsurface stormwater system refer to the Hydrograph Reporting within Appendix D of this Report.

Total Impervious Area of Redevelopment = $21,960\pm$ square feet Total Impervious Area Conveyed to Basin = $8,000\pm$ square feet

Required Recharge Volume Calculations

 $R_{v} = F * A_{Imp}$ $R_{v} = Required Minimum Recharge Volume (cf)$ F = Target Depth Factor (in) $A_{Imp} = Area of Impervious Surfaces to Stormwater System (sf)$ $233.33 cf = \frac{0.35 - inch}{12"} * 8,000 sf$

Adjusted Minimum Required Recharge Volume Calculations

$$R_{va} = R_v * \frac{A_{IA}}{A_{Imn}}$$

 $R_{va} = Adjusted Minimum Recharge Volume (cf)$ $A_{IA} = Total Area of Impervious Surfaces in Redevelopment$ $640.5 cf = 233.33 cf * \frac{21,960 sf}{8,000 sf}$

In accordance with Standard 3 of the Massachusetts Stormwater Handbook the proposed subsurface stormwater system is designed with a recharge volume of $936\pm$ cubic feet satisfying the required recharge volume. Based upon the calculations below the proposed system will have a drawdown time of 42.2 hours; 42.2 hours is below the required 72 hours.

Drawdown Calculations

$$Time_{Drawdown} = \frac{R_v}{K * A_b}$$

$$Time_{Drawdown} = Drawdown Time (hours)$$

$$K = Infiltration Rate \left(\frac{inches}{hour}\right)$$

$$A_b = Area of Bottom of System$$

$$42.2 hours = \frac{936 cf}{0.52 \left(\frac{in}{hr}\right) * \frac{1'}{12"} * 512 sf}$$

$$42.2 hours < 72 hours$$

STANDARD 4: WATER QUALITY

The proposed development has been designed with stormwater treatment that incorporates structural bestmanagement practices designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

In accordance with the MassDEP Stormwater Handbook the stormwater infiltration system is required to provide a water quality treatment volume (WQV) greater than $907\pm$ cubic feet (refer to calculation below). The stormwater infiltration system proposes a recharge volume of $936\pm$ cubic feet, exceeding the required WQV.

Water Quality Treatment Volume

$$V_{WQ} = \frac{0.5 - inch}{12 \frac{inches}{foot}} * \left(A_{IMP} * 43,560 \frac{sf}{acre}\right)$$

$$V_{WQ} = Required Water Quality Volume (cubic feet)$$

$$D_{WQ} = Water Quality Depth (0.5 - inch)$$

$$A_{IMP} = Impervious Area (in acres)$$

$$907 \pm cf = \frac{0.5 - inch}{12 \frac{inches}{foot}} * \left(0.50 * 43,560 \frac{sf}{acre}\right)$$

In an effort to improve the quality of stormwater discharge associated with the proposed parking area and driveways, the project has been designed with catch basins with 4-foot-deep sumps and hooded outlets, and a Contech hydrodynamic separator upgradient of the stormwater management system, as well as a Contech hydrodynamic separator to the north of the drive-thru lane to collect and treat the stormwater runoff not getting routed through the underground infiltration system. A hydrodynamic separator uses swirl concentration and continuous deflective separation to screen, separate and trap trash, debris, sediment, oil, and grease from stormwater runoff. The hydrodynamic separator will capture and retain 100% of floatables; effectively removing sediment. The hydrodynamic separator has been sized based on the 1" water quality volume. For more information regarding the TSS removal calculations refer to Appendix C, Drainage Calculations, TSS Removal Calculations.

All proposed stormwater best management practices will require maintenance throughout the lifetime of the measure. Solli has included as part of this Report, in Appendix E, a Long-Term Operations and Maintenance Plan as required by the Massachusetts Stormwater Handbook and Stormwater Standards.

STANDARD 5: POLLUTION PREVENTION

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to maximum extent practical.

The proposed redevelopment is a coffee shop. This use is not considered a higher potential pollutant load use, such as auto fueling facility, exterior fleet storage areas, exterior vehicle service and equipment cleaning areas, marinas and boatyards, parking lots with high-intensity-use, confined disposal facilities, and disposal sites. The proposed use does not contain higher potential pollutant loads included in industrial facilities such as manufacturing, landfills, recycling facilities, steam electric plants, transportation facilities, treatment works, and light industrial activities.

STANDARD 6: ZONE II / WELLHEAD PROTECTION AREA

Stormwater discharge within the Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or to any other critical area required the use of specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

According to the State of Massachusetts' online GIS mapping, the Site is <u>NOT</u> located within the Zone I, Zone II or Interim Wellhead Protection area of a public water supply watershed. For more information, refer to Appendix A, Figure 5 – Wellhead Protection Map.

STANDARD 7: REDEVELOPMENT PROJECT

A redevelopment project is required to meet the following Stormwater Management Standards only to maximum extent practical: Standard 2, Standard 3, Standard 4, Standard 5, and Standard 6.

The redevelopment of the Site proposes an increase in impervious area compared to existing conditions of the Site. This project does not quality as a "Redevelopment Project" and has been designed to meet Standard 2, Standard 3, Standard 4, Standard 5, and Standard 6.

STANDARD 8: SOIL EROSION & SEDIMENT CONTROL

A plan to control construction-related impacts, including erosion, sedimentation, and other pollutant source during construction and land disturbance activities shall be developed and implemented.

The proposed plans for soil erosion and sediment control prepared for this project have been developed in accordance with the Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas, prepared by the Department of Environmental Protection, Bureau of Resource Protection.

The soil erosion and sediment control practices that will be implemented during the construction of this project include geotextile silt fences, straw bales, straw wattles, a construction entrance, dust control measures, and inlet protection for drainage inlets.

STANDARD 9: LONG-TERM OPERATION & MAINTENANCE PLAN

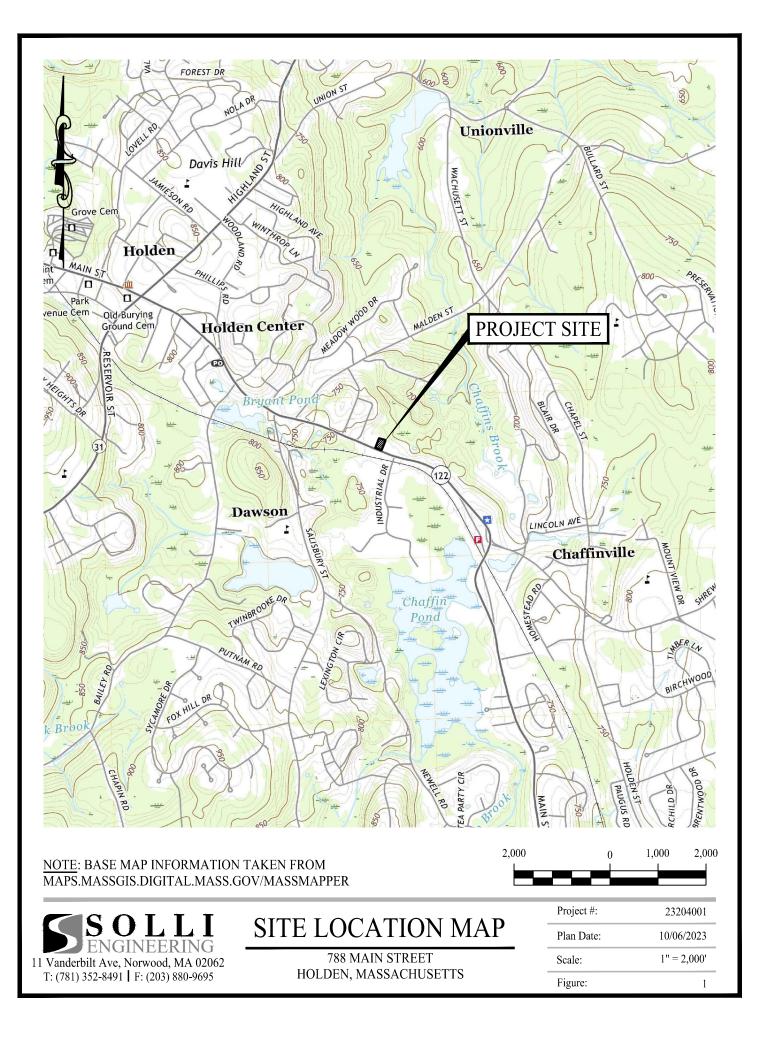
A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

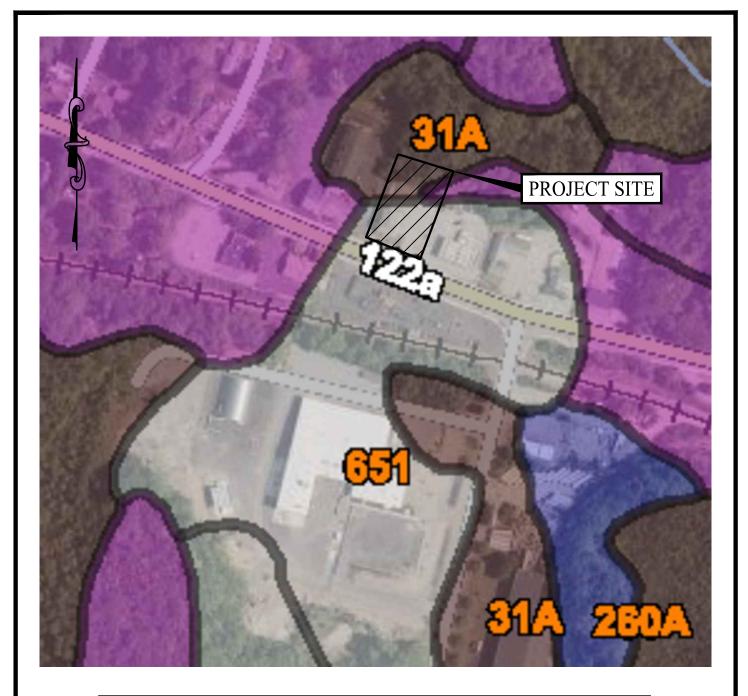
An Operation & Maintenance Plan was prepared for this project and can be found in Appendix E of this Report.

STANDARD 10: ILLICIT DISCHARGES

All illicit discharges to the stormwater management system are prohibited.

Based upon record research, mapping and site walks performed by both the surveyor of record (Northeast Survey Consultants) and Solli, this site has no observed illicit discharges. The proposed redevelopment will <u>NOT</u> produce illicit discharges, such as wastewater discharges and discharges of stormwater contaminated by contact with process wastes, raw materials, toxic pollutants, hazardous substances, oil, or grease. Refer to Appendix B, Supporting Documents, Illicit Discharge Statement for more information.




APPENDICES

Appendix A – Figures Appendix B – Supporting Documents Appendix C – Stormwater Calculations Appendix D – Detailed Design Plans Appendix E – Long-Term Operation & Maintenance

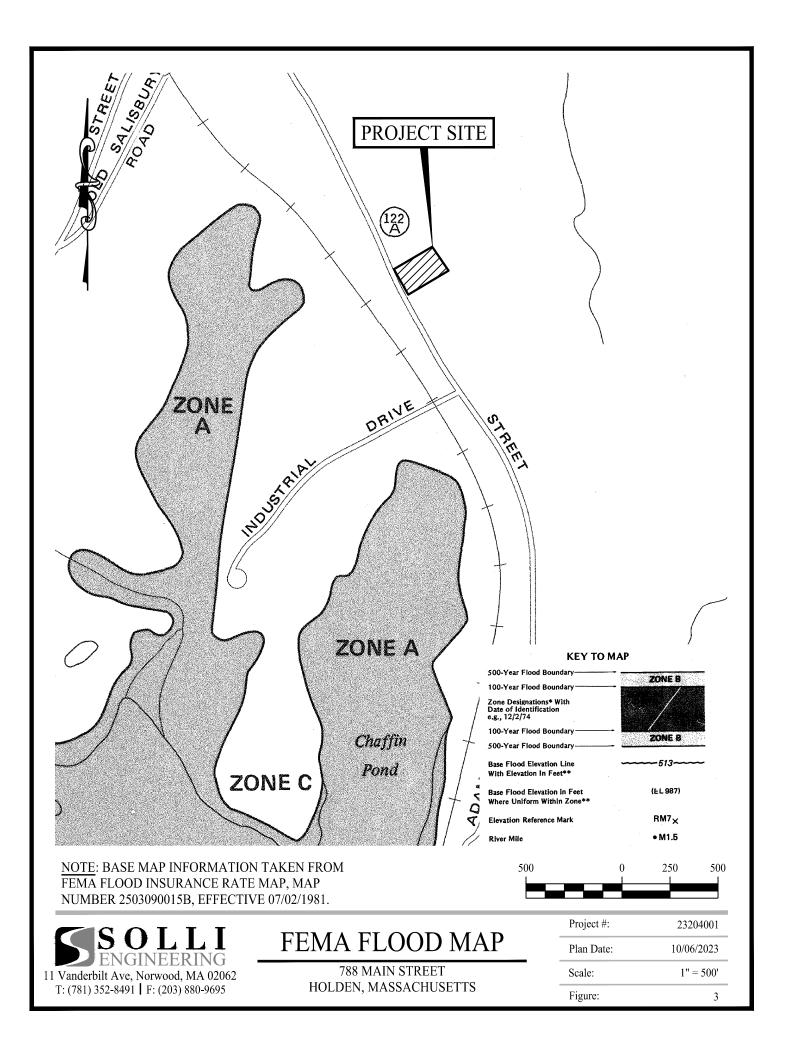
Appendix A – Figures

Figure 1 – Site Location Map Figure 2 – Soil Survey Map Figure 3 – FEMA Flood Map Figure 4 – Surface Water Protection Map Figure 5 – Wellhead Protection Map Figure 6 – Surface Water Protection Map

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	14.3	4.2%
245C	Hinckley loamy sand, 8 to 15 percent slopes	A	79.8	23.6%
651	Udorthents, smoothed		23.8	7.1%

NOTE: BASE MAP RESOURCES TAKEN FROM THE NATURAL RESOURCES CONSERVATION SERVICE, URL: https://websoilsurvey.sc.egov.usda.gov

Project #:

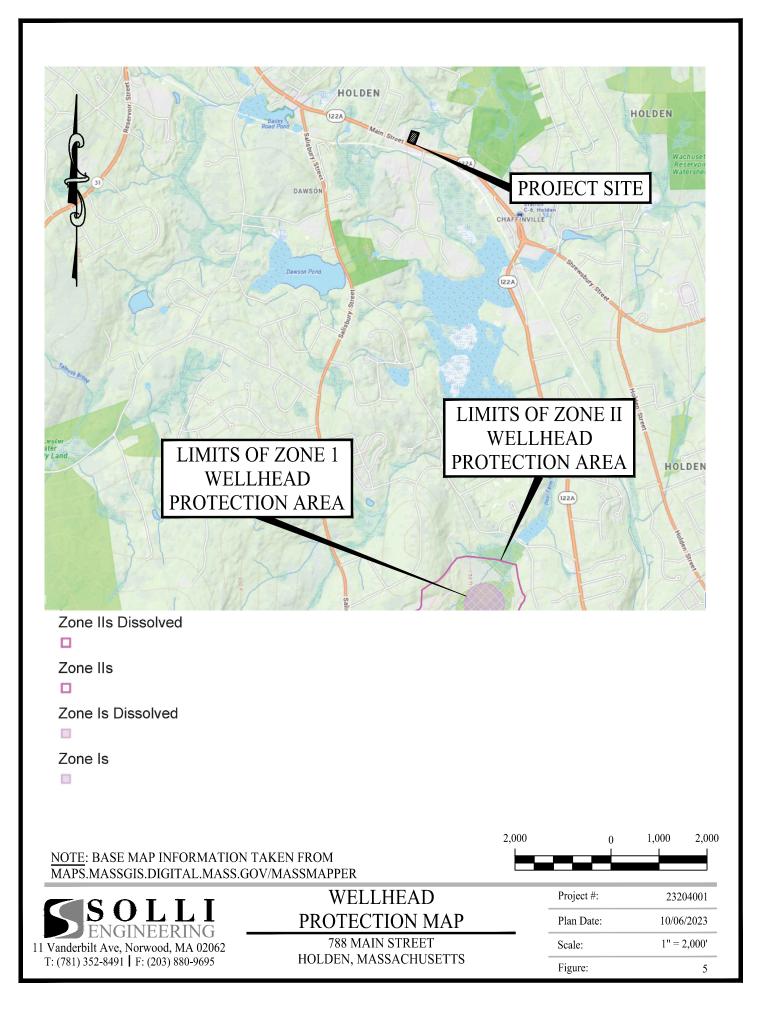



SOIL SURVEY MAP 788 MAIN STREET

HOLDEN, MASSACHUSETTS

23204001

2



NHESP Estimated Habitats of Rare Wildlife

 \mathbb{Z}

NHESP Priority Habitats of Rare Species

1,500 1,500 NOTE: BASE MAP INFORMATION TAKEN FROM THE 14TH EDITION 750 NATURAL HERITAGE ATLAS, URL: MAPS.MASSGIS.DIGITAL.MASS.GOV/MASSMAPPER ENDANGERED AND RARE Project #: 23204001 SPECIES MAP Plan Date: 10/06/2023 JGINEERING **788 MAIN STREET** 1" = 1,500' Scale: 11 Vanderbilt Ave, Norwood, MA 02062 HOLDEN, MASSACHUSETTS T: (781) 352-8491 | F: (203) 880-9695 Figure: 4

11 Vanderbilt Ave, Norwood, MA 02062 T: (781) 352-8491 | F: (203) 880-9695

788 MAIN STREET HOLDEN, MASSACHUSETTS

1" = 100' Scale: Figure: 6

Appendix B – Supporting Documents

Property Record Card Boring Logs & Plan Illicit Discharge Statement

788 MAIN ST

Location	788 MAIN ST	Mblu	175/ 35/ / /
Acct#	10543	Owner	LEINONEN REALTY INC
Assessment	\$346,900	Appraisal	\$346,900
PID	3949	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2023	\$235,500	\$111,400	\$346,900		
	Assessment				
Valuation Year	Improvements	Land	Total		
2023	\$235,500	\$111,400	\$346,900		

Owner of Record

Owner	LEINONEN REALTY INC	Sale Price	\$162,500
Co-Owner		Certificate	
Address	54R JONES RD	Book & Page	16370/0174
	SPENCER, MA 01562	Sale Date	06/17/1994

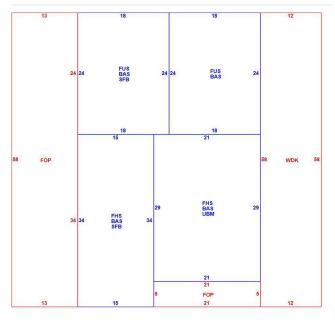
Ownership History

	Owners	hip History		
Owner	Sale Price	Certificate	Book & Page	Sale Date
LEINONEN REALTY INC	\$162,500		16370/0174	06/17/1994

Building Information

Building 1 : Section 1

Year Built:	1880			
Living Area:	4,908			
Replacement Cost:	\$452,811			
Building Percent Good:	50			
Replacement Cost				
Less Depreciation:	\$226,400			
Building Attributes				
Field	Description			
Style:	Commercial			


Model	Commercial
Grade	Average
Stories:	1
Occupancy	6.00
Exterior Wall 1	Clapboard
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asph/F Gls/Cmp
Interior Wall 1	Plastered
Interior Wall 2	Plywood Panel
Interior Floor 1	Pine/Soft Wood
Interior Floor 2	Carpet
Heating Fuel	Gas
Heating Type	Hot Air-no Duc
АС Туре	None
Struct Class	
Bldg Use	STORE/SHOP MDL-94
Total Rooms	
Total Bedrms	00
Total Baths	0
Condo Heat Type	
1st Floor Use:	3220
Heat/AC	NONE
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	ABOVE AVERAGE
Wall Height	7.00
% Comn Wall	0.00

Building Photo

(https://images.vgsi.com/photos2/HoldenMAPhotos//\0021\788%20main%2

Building Layout

(ParcelSketch.ashx?pid=3949&bid=3949)

	Building Sub-Areas (sq ft)					
Code	Description	Gross Area	Living Area			
BAS	First Floor	1,983	1,983			
FHS	Half Story, Finished	1,119	1,119			
SFB	Base, Semi-Finished	942	942			
FUS	Upper Story, Finished	864	864			
FOP	Porch, Open, Finished	859	0			
UBM	Basement, Unfinished	609	0			
WDK	Deck, Wood	696	0			
		7,072	4,908			

Extra Features

Land

Land Use		Land Line Valua	tion
Use Code	3220	Size (Acres)	0.77
Description	STORE/SHOP MDL-94	Frontage	0
Zone	С	Depth	0
Neighborhood	L	Assessed Value	\$111,400
Alt Land Appr	No	Appraised Value	\$111,400
Category			

Outbuildings

	Outbuildings							
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #		
SGN2	DOUBLE SIDED			24.00 S.F.&HGT	\$400	1		
SGN3	W/INT LIGHTS			16.00 S.F.&HGT	\$600	1		
SHD2	W/LIGHTS ETC			96.00 S.F.	\$700	1		
GRN3	COMM PLASTIC			1260.00 S.F.	\$3,200	1		
SGN1	SIGN-1 SD W/M			48.00 S.F.&HGT	\$500	1		
PAV1	PAVING-ASPHALT			4000.00 S.F.	\$3,000	1		
FN2	FENCE-5' CHAIN			40.00 L.F.	\$100	1		
FN1	FENCE-4' CHAIN			200.00 L.F.	\$600	1		

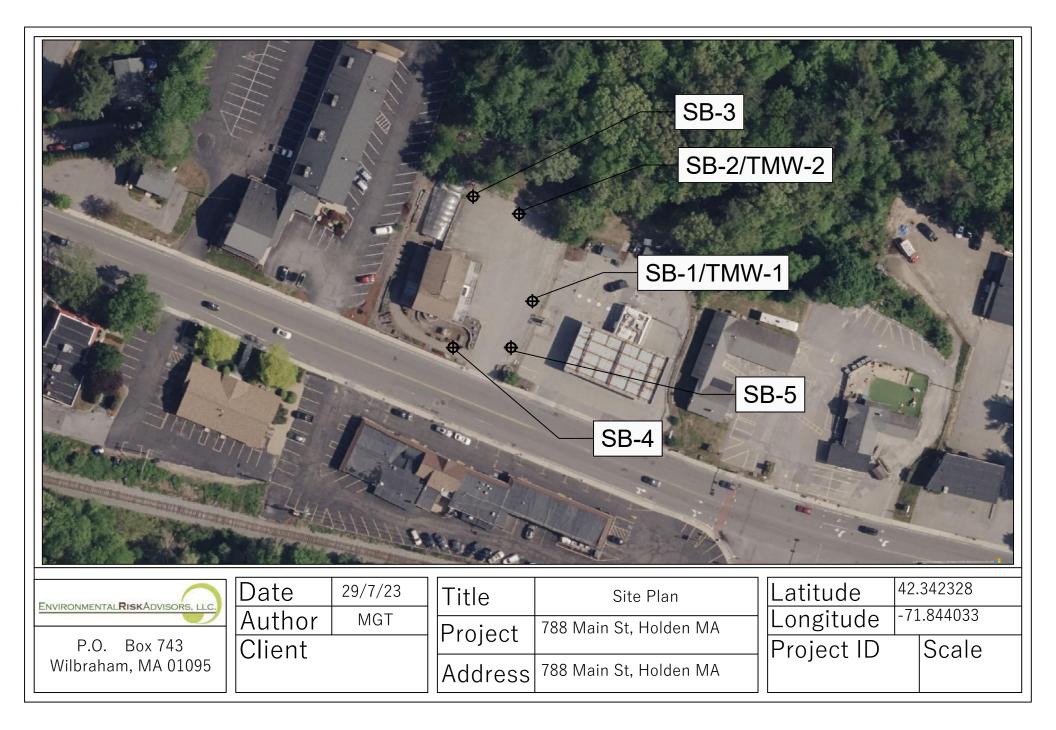
Valuation History

Appraisal							
Valuation Year	Improvements	Land	Total				
2023	\$235,500	\$111,400	\$346,900				
2022	\$221,800	\$106,200	\$328,000				
2021	\$217,200	\$106,200	\$323,400				

Assessment						
Valuation Year	Improvements	Land	Total			
2023	\$235,500	\$111,400	\$346,900			
2022	\$221,800	\$106,200	\$328,000			
2021	\$217,200	\$106,200	\$323,400			

			ana	Log 3B-1 oring Identification [MW-1 ate: 7/5 Time: 1301 heet_of
		Soil	Boring	Log
		110	B	oring Identification 1 201
Environmental	Risk Adviso	ors, llo	D	ate: 7/) mile:
P.O. Box 743			S	heet
Wilbraham, MA				Project/Location: Holden
Wilbranam, m	•		E	Project/Location.
	11-11-11-11-11-11-11-11-11-11-11-11-11-	ect Push, AMS F Nacro Core	Probe	9120-SK
Weather:	Method: Dire	ect Push, AMS F	OWEITIGE	
Soil Sampling Sampler Type	Cooprobe	Aacro Core		O'-3" asphalt, 3"-16" M silty sand,
Sampler Type	Geoproz		1	Lithology Description Estity Sand
		Pecovery	PID	A"-Z" <2halt, 3-16 000 2/
Sample No.	Depth	21/18	0	
3B-1/1	0-4	1º7 T		12"-21" 61860 310
				H-ZUHE EINC
		131/481	0	0-04 0000
3B-1/2	4-8	34/48		1 5". II SILTY SONO
PUT		tital	0	10-5 1- some perisit, 21-32
1012	8-12	32/48		TIL "- 21" WET CITY
55-112				wet silty C sonce
				04-32 wet brown + black silty
				tottag tup t brown brown
2 1	1.2.1	33/18	10	
5B-1/21	12-16	2130/10		(send
port				
and the second				
L	l	1		

łţ


		Sc	oil Bori	ng Log	
Environmen P.O. Box 743 Wilbraham, M Weather:	1A	risors, LLC rect Push, AMS	Power Pro	Boring Identification SB-2/TMW-2 Date: 7/5 Time: 1243 Sheet of Client: Inspector: Project/Location: Holden	
Sampler Type					
Sample No. SB-2/1	Depth	Recovery 31/48	PID	Lithology Description & Remarks C"-3" Fopsoil, 3"-18" Silfy Sand 18"-31" F-M Sand	
58-2/2	1-8	28/48	0	0"-28" F-M sand	
<u>3B-2/3</u>	8-12	40/4B	0	0"-26" F-M sund 26"-40" grey + brown silt	
38-2/4	12-16	47/48	0	O"- 24" wet F silty sand, 24". Drown + black wet silt	47
			999 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) -		

		5	oil Borin	g Log
Environmen P.O. Box 743 Wilbraham, M Weather:	ΛA			Boring Identification 58-3 Date: 7/5 Time: 1345 Sheet of Client: Inspector: Project/Location: Holden
		ect Push, AMS	Power Prob	e 9120-SK
Sampler Type	e: Geoprobe N	Macro Core		
Sample No.	Depth	Recovery	PID	Lithology Description & Remarks
3B-3/1	0-L	25/48	PID	0'-3' usphalt, 3-25 silt + F
<u> </u>				sand w/ 1/4 - 3/4" angular gravel
3B-3/2	1-8	37/48	Õ	0"-19" brown silt + F-M sand, 19"-37" ton F silty sond + 14"-34" angular gravel
58-3/3	8-12	1/46	0	0"-26" Forn F+(silty song + <u>yy"-ys" somironal gravel</u> , 26"-41 wet brown C silty song
			alle na grage a construction de la construction de la construction de la construction de la construction de la Referencia de la construction de la c	
			an a	
			n a an	

.

		S	oil Borin	ig Log	
Environment P.O. Box 743 Wilbraham, M Weather: Soil Sampling Sampler Type	A Method: Dir	rect Push, AMS	Power Prob	Boring Identification 3B-4 Date: 7/5 Time: 1409 Sheetof Client: Inspector: Project/Location: Holden Probe 9120-SK	
Campier Type	. Ocopione				
Sample No. 3B1/1	Depth	Recovery 29/48	PID O	Lithology Description & Remarks O"- 3" asphalt 3"-21" silty M sand 21"-29" silty C sand	
5B-1/2	4-8	39/48	0	0"-14" FSilty Sond + angular gravel 14"-39" wet silty Sond + angular gravel	
				Ref@3	
			ang yang yang yang yang katalog yang katalog yang katalog yang yang yang yang yang yang yang yan		

****			oil Borir		
Environmen	tal Risk Adv	visors, LLC		Boring Identification ち8-5 Date: チノら Time: しりらチ	
P.O. Box 743				Date: $7/5$ Time: 1457	
Wilbraham, MA				Sheet of	
				Client: Inspector:	
Weather:				Project/Location: Holden	
Soil Sampling	g Method: Di	rect Push, AMS	Power Prol	be 9120-SK	
Sampler Type					
Sample No.	Depth	Recovery	PID	Lithology Description & Remarks	
58-5/1	0-4	29/48	0	0"-3" asphult 3"-12" silty black	
/		/		Fill, 12"-29" fan Esilty sand	
,					
3B-5/2	4-3	31/48	O	0-19 Form, FSilty SUND, 19-31	
,	1			wet stev silt	
				9.7.	
58-5/3	8-12	39/48	0	0"-31" M-C arey + brown sitty su	
,	, Alexandra and Alexandra a	1 /		31"-39" M-C black Silty sund	
			nan na je na bri i skojnoval je na nikoval na vranoval na svoje kon		
	anna fa dha ann an Anna an Anna an Anna an Anna ann an Anna ann ann		1971 Welton Automatika Kelonon takan geranaan		
		1	*****		
	inn var nägda den kan an en som en som en som en som en er		*****		
			a fan franskriker og forskriker og det se		
	2010/00/00/00/00/00/00/00/00/00/00/00/00/	1	ĸ:::::::::::::::::::::::::::::::::::::		
	*****		85 30 46 30 47 46 50 46 50 46 50 47 40 48 50 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50		
	****		0.000 million de la constant de la c		
		1	Nadi en ryanana alfa liana day posisina an		
······	9888967973699906699797797979996969797979999999797				
		1			
		+			
	an fan men de fan de				
	994499400499000099960049909490444444644600044946464464490	+	***		
	metriya dina sena dina da pena se da pravisi di ana man	+	*****		
	in this data and an	++-			

	Matanisistan Anana ang pangatèn akang panganén panganén panganén panganén panganén panganén panganén panganén p		Carnon Nanhampura de arcanega da de la desta de la		
		+			
		++	alerter dangak esti internetage dang		
	an na shi ba a i san sa shi cana a na shi cana a shi cana fafaa		when the new sector was to the the first of the two sectors and the two sectors are the sector of the two sectors are the sectors a		
	*****	+			
	under half verden verden der		n ya mana kata na yana mata ya pana mata kata na aya na mata kata na		
		+	an a tha faith a star and the star of the		
	nanopurainterintalenayatasationayanvarapatsasitaa		anyahatetydantelevaanyi vydnosujosalyniajdi vydaaa		
	an de la sector de la compacta de la	+	n a tha na which and a constant of the state of the		
			ng tina ana ani ang		
	na tipe a the providence of the foreign of the providence of the		straine na anna ann an ann ann ann ann ann an		
			an the state of the		

ILLICIT DISCHARGE STATEMENT

Project: Proposed Coffee Shop Redevelopment 788 Main Street (Route 122A), Holden, Massachusetts Project No.: 23204001

Date: October 6, 2023

This statement is provided in accordance with the provisions of the Massachusetts Stormwater Management Standard 10 and of the Massachusetts Stormwater Management handbook.

- All existing and proposed stormwater management systems contain no connection to the site's wastewater sewer system or to any other non-stormwater collection system.
- Existing groundwater collection systems on the site are not connected to the site's wastewater sewer system or to any other non-stormwater collection system.
- The facility's Operation & Maintenance Plan is designed to prevent any discharge of non-stormwater to the drainage system.
- No known existing illicit discharges are on-site, any and all illicit discharge identified during or after construction will be immediately disconnected.
- The proposed modifications and redevelopment will <u>NOT</u> produce illicit discharges, such as wastewater discharges and discharges of stormwater contaminated by contact with process wastes, raw materials, toxic pollutants, hazardous substances, oil, or grease.

Solli Engineering, LLC

SZ Sell

Kevin Solli, PE, PTOE, CPESC, CDP, LEED AP BD+C Founder / Principal

<u>Appendix C – Stormwater Calculations</u>

Hydrology Calculations (2-, 10-, 25-, 50-, 100-year storm events)NOAA Atlas Precipitation DataWatershed Model SchematicHydroCAD Reporting – Existing ConditionsHydroCAD Reporting – Proposed ConditionsHydraulic Calculations (25-year storm event)Storm Sewer Model Schematic & ReportingHydraulic ProfilesBest Management PracticesWater Quality Volume Calculation WorksheetTSS Calculation WorksheetsMassDEP treatment Train Worksheets

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Holden, Massachusetts, USA* Latitude: 42.3423°, Longitude: -71.8442° Elevation: 724 ft** * source: ESRI Maps ** source: USGS

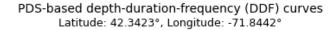
POINT PRECIPITATION FREQUENCY ESTIMATES

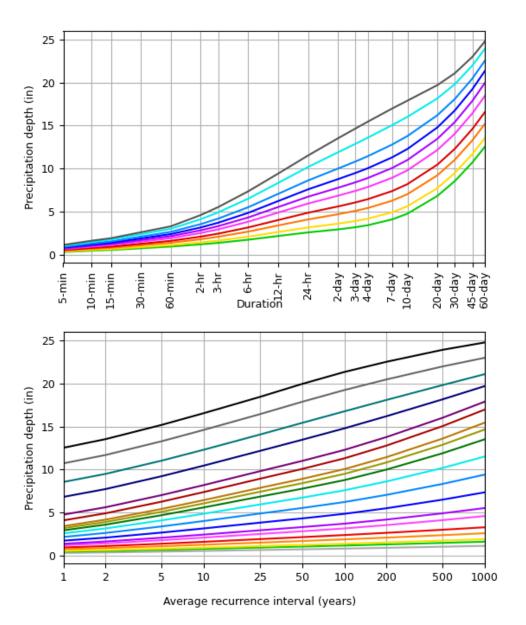
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

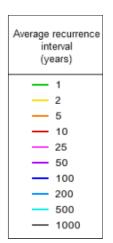
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.347 (0.274-0.431)	0.404 (0.319-0.503)	0.498 (0.392-0.623)	0.576 (0.451-0.724)	0.683 (0.516-0.897)	0.764 (0.564-1.02)	0.848 (0.605-1.18)	0.939 (0.635-1.34)	1.06 (0.691-1.58)	1.16 (0.737-1.77)
10-min	0.491 (0.389-0.611)	0.573 (0.452-0.713)	0.706 (0.555-0.882)	0.816 (0.638-1.03)	0.968 (0.730-1.27)	1.08 (0.799-1.45)	1.20 (0.857-1.67)	1.33 (0.900-1.91)	1.51 (0.980-2.24)	1.65 (1.04-2.51)
15-min	0.578 (0.457-0.719)	0.674 (0.532-0.839)	0.831 (0.654-1.04)	0.960 (0.751-1.21)	1.14 (0.859-1.49)	1.27 (0.940-1.71)	1.41 (1.01-1.97)	1.56 (1.06-2.24)	1.78 (1.15-2.64)	1.94 (1.23-2.95)
30-min	0.778 (0.615-0.968)	0.908 (0.718-1.13)	1.12 (0.883-1.40)	1.30 (1.02-1.63)	1.54 (1.16-2.02)	1.73 (1.27-2.32)	1.92 (1.36-2.66)	2.12 (1.44-3.04)	2.40 (1.56-3.58)	2.63 (1.66-4.00)
60-min	0.978 (0.774-1.22)	1.14 (0.903-1.42)	1.41 (1.11-1.77)	1.64 (1.28-2.06)	1.94 (1.47-2.55)	2.18 (1.61-2.92)	2.42 (1.72-3.36)	2.68 (1.81-3.84)	3.03 (1.97-4.51)	3.32 (2.10-5.04)
2-hr	1.23 (0.980-1.52)	1.45 (1.16-1.80)	1.82 (1.44-2.26)	2.12 (1.67-2.65)	2.54 (1.94-3.33)	2.85 (2.13-3.83)	3.19 (2.30-4.45)	3.57 (2.43-5.10)	4.14 (2.70-6.13)	4.62 (2.94-6.99)
3-hr	1.40 (1.12-1.73)	1.67 (1.34-2.06)	2.11 (1.68-2.60)	2.47 (1.96-3.07)	2.97 (2.27-3.88)	3.34 (2.50-4.47)	3.74 (2.72-5.22)	4.22 (2.87-5.99)	4.94 (3.22-7.28)	5.55 (3.53-8.35)
6-hr	1.76 (1.42-2.16)	2.12 (1.71-2.59)	2.70 (2.17-3.32)	3.19 (2.54-3.93)	3.85 (2.97-5.00)	4.34 (3.28-5.79)	4.88 (3.58-6.79)	5.53 (3.78-7.80)	6.52 (4.27-9.55)	7.37 (4.70-11.0)
12-hr	2.20 (1.78-2.66)	2.66 (2.16-3.23)	3.42 (2.76-4.16)	4.04 (3.25-4.96)	4.91 (3.81-6.33)	5.55 (4.21-7.34)	6.24 (4.60-8.62)	7.08 (4.86-9.92)	8.34 (5.48-12.1)	9.43 (6.03-14.0)
24-hr	2.61 (2.14-3.14)	3.18 (2.60-3.83)	4.12 (3.35-4.98)	4.89 (3.96-5.95)	5.96 (4.65-7.63)	6.75 (5.15-8.86)	7.60 (5.63-10.4)	8.63 (5.95-12.0)	10.2 (6.72-14.7)	11.5 (7.40-17.0)
2-day	2.96 (2.44-3.53)	3.63 (2.99-4.34)	4.72 (3.87-5.66)	5.62 (4.58-6.79)	6.87 (5.40-8.74)	7.79 (5.99-10.2)	8.79 (6.55-12.0)	10.0 (6.92-13.8)	11.9 (7.87-17.1)	13.5 (8.70-19.8)
3-day	3.22 (2.66-3.82)	3.94 (3.26-4.68)	5.11 (4.21-6.10)	6.09 (4.98-7.32)	7.43 (5.87-9.42)	8.42 (6.50-11.0)	9.50 (7.12-12.9)	10.8 (7.51-14.9)	12.9 (8.54-18.4)	14.7 (9.45-21.4)
4-day	3.45 (2.87-4.09)	4.21 (3.49-4.99)	5.44 (4.50-6.48)	6.47 (5.31-7.75)	7.88 (6.24-9.96)	8.92 (6.91-11.6)	10.1 (7.54-13.6)	11.5 (7.96-15.7)	13.6 (9.02-19.4)	15.5 (9.98-22.5)
7-day	4.12 (3.45-4.85)	4.94 (4.13-5.83)	6.29 (5.23-7.44)	7.40 (6.12-8.82)	8.94 (7.11-11.2)	10.1 (7.83-13.0)	11.3 (8.50-15.2)	12.8 (8.92-17.5)	15.0 (10.0-21.3)	17.0 (11.0-24.6)
10-day	4.78 (4.02-5.61)	5.64 (4.74-6.63)	7.05 (5.89-8.31)	8.21 (6.81-9.74)	9.81 (7.83-12.2)	11.0 (8.56-14.1)	12.3 (9.22-16.4)	13.8 (9.65-18.7)	16.0 (10.7-22.6)	17.9 (11.6-25.8)
20-day	6.84 (5.79-7.96)	7.75 (6.56-9.03)	9.24 (7.78-10.8)	10.5 (8.75-12.3)	12.2 (9.75-14.9)	13.5 (10.5-16.9)	14.8 (11.0-19.3)	16.2 (11.4-21.8)	18.1 (12.2-25.4)	19.7 (12.8-28.2)
30-day	8.57 (7.29-9.93)	9.51 (8.08-11.0)	11.0 (9.34-12.9)	12.3 (10.3-14.4)	14.1 (11.3-17.1)	15.4 (12.0-19.2)	16.8 (12.5-21.6)	18.1 (12.8-24.2)	19.8 (13.3-27.6)	21.1 (13.7-30.0)
45-day	10.7 (9.17-12.4)	11.7 (9.99-13.5)	13.3 (11.3-15.4)	14.6 (12.3-17.0)	16.4 (13.2-19.9)	17.9 (14.0-22.0)	19.2 (14.3-24.4)	20.5 (14.5-27.2)	22.0 (14.8-30.4)	23.0 (15.0-32.6)
60-day	12.5 (10.8-14.4)	13.5 (11.6-15.6)	15.2 (13.0-17.5)	16.5 (14.0-19.2)	18.4 (14.9-22.2)	19.9 (15.6-24.5)	21.3 (15.9-26.9)	22.5 (16.0-29.9)	23.9 (16.2-33.0)	24.7 (16.3-35.0)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration						
5-min	2-day					
- 10-min	— 3-day					
15-min	— 4-day					
	- 7-day					
	— 10-day					
2-hr	- 20-day					
— 3-hr						
— 6-hr	— 45-day					
- 12-hr	60-day					
- 24-hr						

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Sep 13 15:48:10 2023

Back to Top

Maps & aerials

Small scale terrain

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Holden, Massachusetts, USA* Latitude: 42.3423°, Longitude: -71.8442° Elevation: 724 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

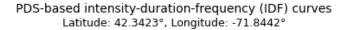
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

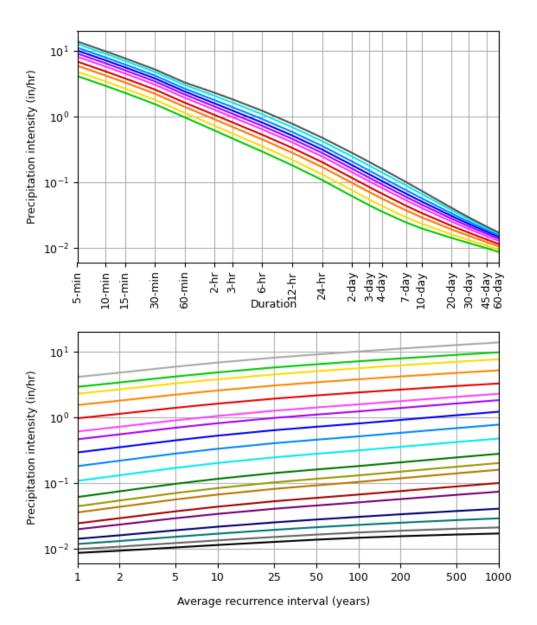
NOAA, National Weather Service, Silver Spring, Maryland

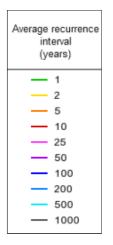
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.16 (3.29-5.17)	4.85 (3.83-6.04)	5.98 (4.70-7.48)	6.91 (5.41-8.69)	8.20 (6.19-10.8)	9.17 (6.77-12.3)	10.2 (7.26-14.2)	11.3 (7.62-16.1)	12.8 (8.29-19.0)	14.0 (8.84-21.3)
10-min	2.95 (2.33-3.67)	3.44 (2.71-4.28)	4.24 (3.33-5.29)	4.90 (3.83-6.16)	5.81 (4.38-7.62)	6.50 (4.79-8.72)	7.21 (5.14-10.0)	7.98 (5.40-11.4)	9.05 (5.88-13.5)	9.90 (6.27-15.1)
15-min	2.31 (1.83-2.88)	2.70 (2.13-3.36)	3.32 (2.62-4.16)	3.84 (3.00-4.83)	4.56 (3.44-5.98)	5.10 (3.76-6.84)	5.66 (4.03-7.87)	6.26 (4.24-8.97)	7.10 (4.61-10.6)	7.77 (4.92-11.8)
30-min	1.56 (1.23-1.94)	1.82 (1.44-2.26)	2.24 (1.77-2.80)	2.60 (2.03-3.26)	3.08 (2.33-4.05)	3.45 (2.55-4.63)	3.83 (2.73-5.33)	4.24 (2.87-6.08)	4.81 (3.12-7.15)	5.26 (3.33-8.00)
60-min	0.978 (0.774-1.22)	1.14 (0.903-1.42)	1.41 (1.11-1.77)	1.64 (1.28-2.06)	1.94 (1.47-2.55)	2.18 (1.61-2.92)	2.42 (1.72-3.36)	2.68 (1.81-3.84)	3.03 (1.97-4.51)	3.32 (2.10-5.04)
2-hr	0.615	0.727	0.910	1.06	1.27	1.43	1.59	1.79	2.07	2.31
	(0.490-0.759)	(0.578-0.899)	(0.721-1.13)	(0.836-1.32)	(0.968-1.66)	(1.06-1.91)	(1.15-2.22)	(1.21-2.55)	(1.35-3.07)	(1.47-3.49)
3-hr	0.467	0.556	0.702	0.822	0.988	1.11	1.24	1.40	1.64	1.85
	(0.374-0.575)	(0.445-0.685)	(0.559-0.867)	(0.651-1.02)	(0.756-1.29)	(0.832-1.49)	(0.905-1.74)	(0.954-1.99)	(1.07-2.42)	(1.18-2.78)
6-hr	0.294	0.354	0.451	0.532	0.643	0.725	0.814	0.922	1.09	1.23
	(0.237-0.359)	(0.285-0.432)	(0.362-0.553)	(0.424-0.656)	(0.495-0.835)	(0.547-0.966)	(0.597-1.13)	(0.630-1.30)	(0.712-1.59)	(0.785-1.84)
12-hr	0.182 (0.148-0.220)	0.220 (0.179-0.267)	0.283 (0.229-0.345)	0.335 (0.269-0.411)	0.407 (0.316-0.525)	0.460 (0.349-0.609)	0.518 (0.381-0.715)	0.587 (0.403-0.823)	0.692 (0.454-1.01)	0.782 (0.500-1.16)
24-hr	0.108	0.132	0.171	0.203	0.248	0.281	0.316	0.359	0.424	0.480
	(0.089-0.130)	(0.108-0.159)	(0.139-0.207)	(0.164-0.247)	(0.193-0.317)	(0.214-0.369)	(0.234-0.434)	(0.247-0.500)	(0.279-0.613)	(0.308-0.708)
2-day	0.061	0.075	0.098	0.117	0.143	0.162	0.183	0.208	0.247	0.281
	(0.050-0.073)	(0.062-0.090)	(0.080-0.117)	(0.095-0.141)	(0.112-0.182)	(0.124-0.211)	(0.136-0.250)	(0.144-0.288)	(0.163-0.355)	(0.181-0.412)
3-day	0.044 (0.037-0.053)	0.054 (0.045-0.065)	0.071 (0.058-0.084)	0.084 (0.069-0.101)	0.103 (0.081-0.130)	0.116 (0.090-0.152)	0.131 (0.098-0.179)	0.150 (0.104-0.207)	0.178 (0.118-0.255)	0.203 (0.131-0.297)
4-day	0.035	0.043	0.056	0.067	0.082	0.092	0.104	0.119	0.141	0.160
	(0.029-0.042)	(0.036-0.051)	(0.046-0.067)	(0.055-0.080)	(0.065-0.103)	(0.071-0.120)	(0.078-0.142)	(0.082-0.163)	(0.094-0.201)	(0.103-0.234)
7-day	0.024	0.029	0.037	0.044	0.053	0.059	0.067	0.076	0.089	0.100
	(0.020-0.028)	(0.024-0.034)	(0.031-0.044)	(0.036-0.052)	(0.042-0.066)	(0.046-0.077)	(0.050-0.090)	(0.053-0.103)	(0.059-0.126)	(0.065-0.146)
10-day	0.019	0.023	0.029	0.034	0.040	0.045	0.051	0.057	0.066	0.074
	(0.016-0.023)	(0.019-0.027)	(0.024-0.034)	(0.028-0.040)	(0.032-0.050)	(0.035-0.058)	(0.038-0.068)	(0.040-0.078)	(0.044-0.094)	(0.048-0.107)
20-day	0.014	0.016	0.019	0.021	0.025	0.028	0.030	0.033	0.037	0.041
	(0.012-0.016)	(0.013-0.018)	(0.016-0.022)	(0.018-0.025)	(0.020-0.031)	(0.021-0.035)	(0.023-0.040)	(0.023-0.045)	(0.025-0.052)	(0.026-0.058)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.023	0.025	0.027	0.029
	(0.010-0.013)	(0.011-0.015)	(0.012-0.017)	(0.014-0.020)	(0.015-0.023)	(0.016-0.026)	(0.017-0.029)	(0.017-0.033)	(0.018-0.038)	(0.019-0.041)
45-day	0.009	0.010	0.012	0.013	0.015	0.016	0.017	0.018	0.020	0.021
	(0.008-0.011)	(0.009-0.012)	(0.010-0.014)	(0.011-0.015)	(0.012-0.018)	(0.012-0.020)	(0.013-0.022)	(0.013-0.025)	(0.013-0.028)	(0.013-0.030)
60-day	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017
	(0.007-0.010)	(0.008-0.010)	(0.008-0.012)	(0.009-0.013)	(0.010-0.015)	(0.010-0.016)	(0.011-0.018)	(0.011-0.020)	(0.011-0.022)	(0.011-0.024)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

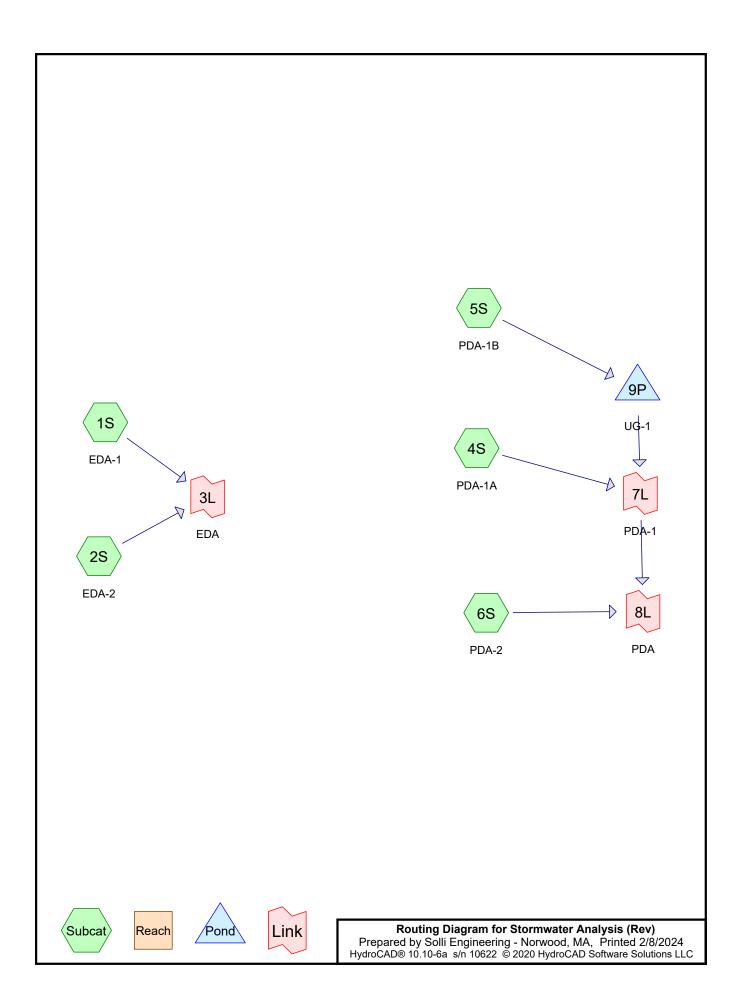

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration						
— 5-min	2-day					
10-min	— 3-day					
15-min	4-day					
30-min	- 7-day					
- 60-min	— 10-day					
— 2-hr	- 20-day					
— 3-hr	— 30-day					
— 6-hr	— 45-day					
- 12-hr						
— 24-hr						


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Sep 13 15:49:10 2023

Back to Top

Maps & aerials

Small scale terrain

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	Type III 24-hr		Default	24.00	1	3.18	2
2	10-yr	Type II 24-hr		Default	24.00	1	4.89	2
3	25-yr	Type II 24-hr		Default	24.00	1	5.96	2
4	50-yr	Type II 24-hr		Default	24.00	1	6.75	2
5	100-yr	Type II 24-hr		Default	24.00	1	7.60	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
0.5	10 69	50-75% Grass cover, Fair, HSG B (1S, 2S, 4S, 5S, 6S)
0.9	70 98	Paved parking, HSG A (1S, 2S, 4S, 5S, 6S)
0.0	60 60	Woods, Fair, HSG B (1S)
1.5	40 87	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.970	HSG A	1S, 2S, 4S, 5S, 6S
0.570	HSG B	1S, 2S, 4S, 5S, 6S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
1.540		TOTAL AREA

Stormwater Analysis (Rev)

Prepared by Solli Engineering - Norwood, MA	
HydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions I	LL

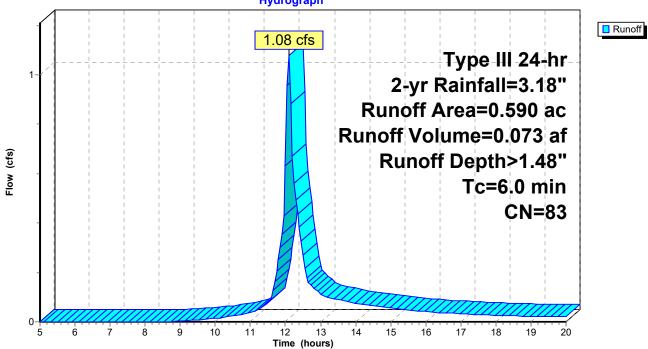
Printed 2/8/2024 LC Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.510	0.000	0.000	0.000	0.510	50-75% Grass cover, Fair	1S, 2S, 4S, 5S, 6S
0.970	0.000	0.000	0.000	0.000	0.970	Paved parking	1S, 2S, 4S, 5S, 6S
0.000 0.970	0.060 0.570	0.000 0.000	0.000 0.000	0.000 0.000	0.060 1.540	Woods, Fair TOTAL AREA	1S

Ground Covers (all nodes)

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EDA-1	Runoff Area=0.590 ac 50.85% Impervious Runoff Depth>1.48" Tc=6.0 min CN=83 Runoff=1.08 cfs 0.073 af
Subcatchment2S: EDA-2	Runoff Area=0.180 ac 83.33% Impervious Runoff Depth>2.29" Tc=6.0 min CN=93 Runoff=0.48 cfs 0.034 af
Subcatchment4S: PDA-1A	Runoff Area=0.440 ac 70.45% Impervious Runoff Depth>1.94" Tc=6.0 min CN=89 Runoff=1.04 cfs 0.071 af
Subcatchment5S: PDA-1B	Runoff Area=0.190 ac 94.74% Impervious Runoff Depth>2.58" Tc=6.0 min CN=96 Runoff=0.55 cfs 0.041 af
Subcatchment6S: PDA-2	Runoff Area=0.140 ac 21.43% Impervious Runoff Depth>0.99" Tc=6.0 min CN=75 Runoff=0.17 cfs 0.012 af
Pond 9P: UG-1	Peak Elev=721.62' Storage=1,010 cf Inflow=0.55 cfs 0.041 af Outflow=0.10 cfs 0.019 af
Link 3L: EDA	Inflow=1.56 cfs 0.107 af Primary=1.56 cfs 0.107 af
Link 7L: PDA-1	Inflow=1.04 cfs 0.090 af Primary=1.04 cfs 0.090 af
Link 8L: PDA	Inflow=1.21 cfs 0.102 af Primary=1.21 cfs 0.102 af


Total Runoff Area = 1.540 ac Runoff Volume = 0.230 af Average Runoff Depth = 1.80" 37.01% Pervious = 0.570 ac 62.99% Impervious = 0.970 ac

Summary for Subcatchment 1S: EDA-1

Runoff = 1.08 cfs @ 12.09 hrs, Volume= 0.073 af, Depth> 1.48" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.18"

	CN Des	cription								
0.300	98 Pav	ed parking,	, HSG A							
0.060	60 Woo	ods, Fair, H	ISG B							
0.230	69 50-7	<u>′5% Grass</u>	cover, Fair	r, HSG B						
0.590		ghted Aver								
0.290	-	5% Pervio								
0.300	50.8	35% Imperv	∕ious Area							
T		V/.1	0							
Tc Leng		Velocity	Capacity	Description						
(min) (fee	t) (ft/ft)	(ft/sec)	(cfs)	Dive of Extend						
6.0				Direct Entry,						
			Subcate	hment 1S: EDA-1						
Subcalchment 15. EDA-1										
			Hydrograph							
			Hydro	graph						
			Hydrog	9graph	Pupoff					
ſ			Hydrog 1.08		Runoff					
				cfs						
1				cfs Type-III-24	4-hr					
1				cfs	4-hr					
1				cfs Type-III-24	4-hr 18"					

CN=93

19

20

Summary for Subcatchment 2S: EDA-2

Runoff 0.48 cfs @ 12.09 hrs, Volume= = Routed to Link 3L : EDA

0.2-

0.15

0.1

0.05

0-

5

6

7

8

ģ

10

11

12 13 Time (hours)

14

15

16

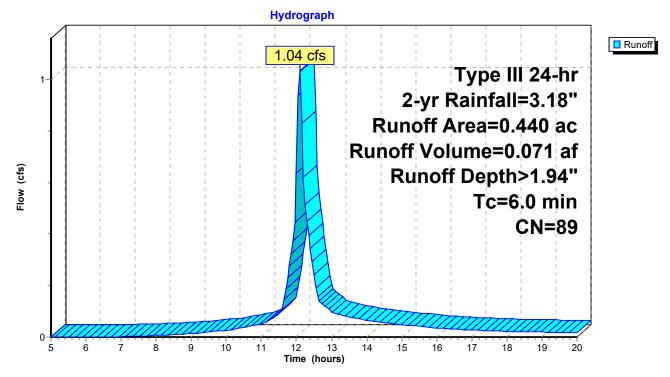
17

18

0.034 af, Depth> 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.18"

Area (ac) CN De	escription	
	aved parking, HSG A)-75% Grass cover, Fair, HSG B	
0.180 93 W 0.030 16	/eighted Average 5.67% Pervious Area 3.33% Impervious Area	
Tc Length Slop (min) (feet) (ft/f	ft) (ft/sec) (cfs)	
6.0	Direct Entry,	
	Subcatchment 2S: EDA-2	
	Hydrograph	
		Runoff
0.5		
0.45		
0.4	Runoff Area=0.180 ac	
0.35	Runoff Volume=0.034 af	
§ 0.3 0.25	Runoff Depth>2.29"	
о 0.25	Tc=6.0 min	

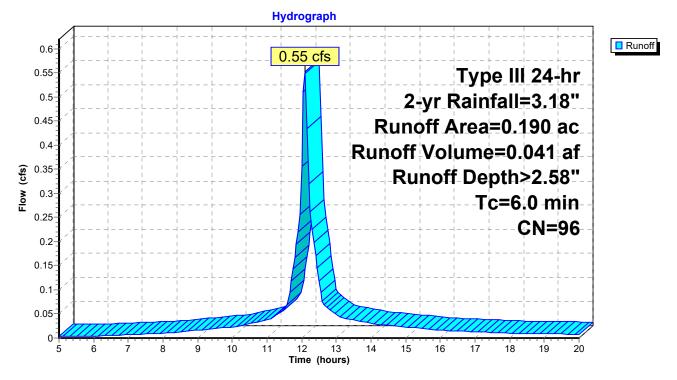

Summary for Subcatchment 4S: PDA-1A

Runoff = 1.04 cfs @ 12.09 hrs, Volume= Routed to Link 7L : PDA-1 0.071 af, Depth> 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.18"

	Area (ac)	CN	Desc	ription						
	0.3	310	98	Pave	d parking	HSG A					
	0.1	130	69 50-75% Grass cover, Fair, HSG B								
	0.440 89 Weighted Average										
	0.130 29.55% Pervious Area										
	0.3	310		70.4	5% Imperv	vious Area					
(n	Tc nin)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	6.0						Direct Entry,				

Subcatchment 4S: PDA-1A


Summary for Subcatchment 5S: PDA-1B

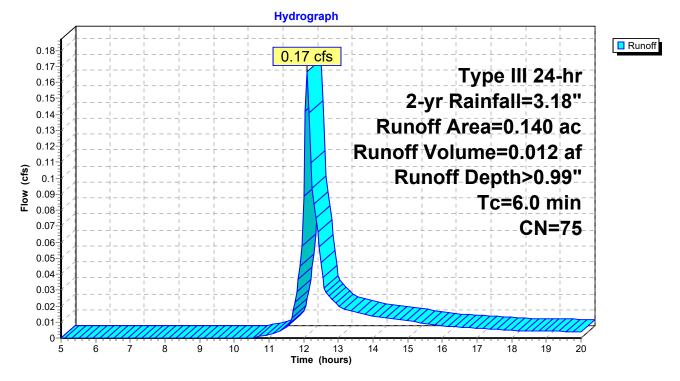
Runoff = 0.55 cfs @ 12.09 hrs, Volume= Routed to Pond 9P : UG-1 0.041 af, Depth> 2.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.18"

 Area	(ac)	CN	Desc	ription					
0.	0.180 98 Paved parking, HSG A								
 0.	010	010 69 50-75% Grass cover, Fair, HSG B							
0.190 96 Weighted Average									
0.010 5.26% Pervious Area									
0.180 94.74% Im					vious Area				
T	1 4			V / . I ! f	0	Description			
	Lengt		Slope	Velocity	Capacity	Description			
 (min)	(feet	i)	(ft/ft)	(ft/sec)	(cfs)				
6.0						Direct Entry,			

Subcatchment 5S: PDA-1B

Summary for Subcatchment 6S: PDA-2


Runoff = 0.17 cfs @ 12.10 hrs, Volume= 0 Routed to Link 8L : PDA

0.012 af, Depth> 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.18"

	Area	(ac)	CN	Desc	ription					
	0.	030	98	Pave	d parking,	HSG A				
_	0.	110	110 69 50-75% Grass cover, Fair, HSG B							
	0.140 75 Weighted Average									
	0.110 78.57% Pervious Area									
	0.030 21.43% Impervious Area									
	Та	اممر	h (Clana	Valacity	Conosity	Description			
	Tc	Leng		Slope	Velocity	Capacity	Description			
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	6.0						Direct Entry,			

Subcatchment 6S: PDA-2

Summary for Pond 9P: UG-1

 Inflow Area =
 0.190 ac, 94.74% Impervious, Inflow Depth > 2.58" for 2-yr event

 Inflow =
 0.55 cfs @
 12.09 hrs, Volume=
 0.041 af

 Outflow =
 0.10 cfs @
 12.55 hrs, Volume=
 0.019 af, Atten= 83%, Lag= 28.0 min

 Primary =
 0.10 cfs @
 12.55 hrs, Volume=
 0.019 af

 Routed to Link 7L : PDA-1
 0.019 af
 0.019 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 721.62' @ 12.55 hrs Surf.Area= 512 sf Storage= 1,010 cf

Plug-Flow detention time= 170.0 min calculated for 0.019 af (47% of inflow) Center-of-Mass det. time= 77.2 min (825.9 - 748.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	719.00'	102 cf	8.00'W x 64.00'L x 4.67'H Field A
			2,389 cf Overall - 2,133 cf Embedded = 256 cf x 40.0% Voids
#2A	719.50'	1,496 cf	retain_it retain_it 3.5' x 8 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			1 Rows adjusted for 110.5 cf perimeter wall
		1 598 cf	Total Available Storage

1,598 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	718.25'	12.0" Round Culvert
	-		L= 122.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 718.25' / 715.85' S= 0.0197 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	722.75'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	721.45'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	719.00'	0.520 in/hr Exfiltration over Surface area
	-		Conductivity to Groundwater Elevation = 715.00'

Primary OutFlow Max=0.10 cfs @ 12.55 hrs HW=721.62' (Free Discharge)

-1=Culvert (Passes 0.09 cfs of 5.06 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

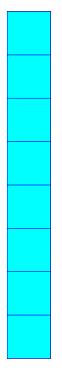
-3=Orifice/Grate (Orifice Controls 0.09 cfs @ 1.41 fps)

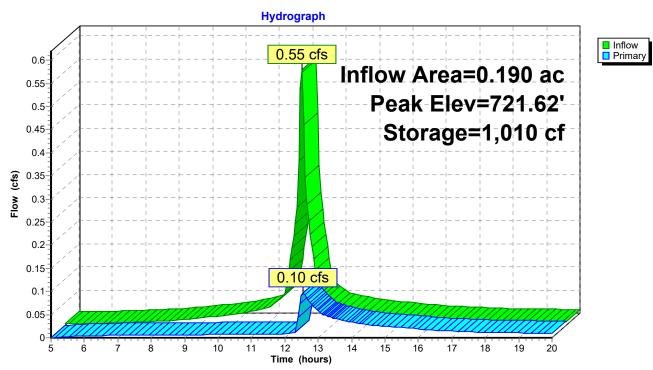
-4=Exfiltration (Controls 0.01 cfs)

Pond 9P: UG-1 - Chamber Wizard Field A

Chamber Model = retain_it retain_it 3.5' (retain-it®)

Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf 1 Rows adjusted for 110.5 cf perimeter wall


8 Chambers/Row x 8.00' Long = 64.00' Row Length 1 Rows x 96.0" Wide = 8.00' Base Width 6.0" Stone Base + 50.0" Chamber Height = 4.67' Field Height


6.1 cf Sidewall x 8 x 2 + 6.1 cf Endwall x 1 x 2 = 110.5 cf Perimeter Wall 8 Chambers x 200.8 cf - 110.5 cf Perimeter wall = 1,495.7 cf Chamber Storage 8 Chambers x 266.7 cf = 2,133.3 cf Displacement

2,389.3 cf Field - 2,133.3 cf Chambers = 256.0 cf Stone x 40.0% Voids = 102.4 cf Stone Storage

Chamber Storage + Stone Storage = 1,598.1 cf = 0.037 afOverall Storage Efficiency = 66.9%Overall System Size = $64.00' \times 8.00' \times 4.67'$

8 Chambers 88.5 cy Field 9.5 cy Stone

Pond 9P: UG-1

Stormwater Analysis (Rev)Type IIIPrepared by Solli Engineering - Norwood, MAHydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-yr Rainfall=3.18" Printed 2/8/2024 Page 15

Stage-Discharge for Pond 9P: UG-1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Primary	Elevation	Primary
719.05 0.01 721.70 0.18 719.10 0.01 721.75 0.24 719.15 0.01 721.80 0.31 719.20 0.01 721.85 0.37 719.25 0.01 721.90 0.44 719.30 0.01 722.90 0.53 719.40 0.01 722.00 0.53 719.40 0.01 722.10 0.61 719.55 0.01 722.20 0.68 719.65 0.01 722.20 0.68 719.65 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.75 0.01 722.30 0.74 719.75 0.01 722.50 0.86 719.80 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.95 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.05 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.30 4.01 720.60 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.60 0.01 723.55 4.68 720.75 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td></td>				
719.10 0.01 721.75 0.24 719.15 0.01 721.80 0.31 719.25 0.01 721.90 0.44 719.35 0.01 721.90 0.44 719.35 0.01 722.00 0.53 719.45 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.50 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.55 0.01 722.30 0.74 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.40 0.80 719.85 0.01 722.50 0.86 719.95 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 723.00 2.37 <td></td> <td></td> <td></td> <td></td>				
719.15 0.01 721.80 0.31 719.25 0.01 721.90 0.44 719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.65 0.01 722.20 0.68 719.65 0.01 722.30 0.74 719.65 0.01 722.30 0.74 719.65 0.01 722.30 0.74 719.75 0.01 722.45 0.83 719.80 0.01 722.45 0.83 719.80 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.75 0.98 720.10 0.01 722.85 1.35 720.20 0.01 722.85 1.35 720.20 0.01 722.85 1.99 720.40 0.01 723.10 2.26 720.40 0.01 723.10 2.26 720.40 0.01 723.20 3.71 720.40 0.01 723.35 4.66 720.55 0.01 723.30 4.01 720.70 0.01 723.35 4.68 720.50 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td></td>				
719.20 0.01 721.85 0.37 719.25 0.01 721.90 0.44 719.30 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.55 0.01 722.10 0.61 719.55 0.01 722.20 0.68 719.60 0.01 722.20 0.68 719.65 0.01 722.30 0.74 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.50 0.86 719.95 0.01 722.40 0.80 719.85 0.01 722.50 0.86 719.95 0.01 722.50 0.86 719.90 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.00 0.01 722.75 0.98 720.10 0.01 722.85 1.35 720.20 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.35 4.66 720.75 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td>-</td>				-
719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.55 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.80 1.64 720.30 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.40 0.01 723.10 3.26 720.55 0.01 723.30 4.01 720.60 0.01 723.30 4.01 720.60 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.50 0.01 723.55 4.68 <td></td> <td></td> <td></td> <td></td>				
719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.75 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.40 0.86 719.90 0.01 722.50 0.86 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.75 0.98 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.35 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.40 0.01 723.20 3.71 720.45 0.01 723.20 3.71 720.45 0.01 723.30 4.01 720.55 0.01 723.20 3.71 720.40 0.01 723.20 3.71 720.45 0.01 723.35 4.68 720.55 0.01 723.30 4.01 721.50 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td></td>				
719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.30 0.74 719.65 0.01 722.35 0.77 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.95 0.01 722.45 0.88 719.90 0.01 722.55 0.86 719.90 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.95 1.99 720.30 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.65 4.68 720.95 0.01 723.65 4.68 <td></td> <td></td> <td></td> <td></td>				
719.45 0.01 722.10 0.61 719.50 0.01 722.15 0.65 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.75 0.01 722.45 0.83 719.80 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.65 0.93 720.00 0.01 722.70 0.96 720.00 0.01 722.75 0.98 720.05 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.20 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.35 0.01 723.05 2.80 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.45 0.01 723.40 4.29 720.45 0.01 723.40 4.29 720.55 0.01 723.40 4.29 720.60 0.01 723.65 4.68 720.95 0.01 723.65 4.68 <td></td> <td></td> <td></td> <td></td>				
719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.90 1.64 720.20 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.00 2.37 720.40 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.65 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.55 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.90 1.64 720.35 0.01 722.90 1.64 720.30 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.10 3.26 720.55 0.01 723.30 4.01 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.65 4.92 720.80 0.01 723.65 4.92 720.80 0.01 723.65 4.92 721.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.55 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.10 3.26 720.55 0.01 723.30 4.01 720.60 0.01 723.20 3.71 720.60 0.01 723.35 4.16 720.75 0.01 723.30 4.01 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.45 0.01 723.10 3.26 720.45 0.01 723.10 3.26 720.45 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.65 0.01 723.30 4.01 720.65 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.35 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td>719.70</td> <td></td> <td>722.35</td> <td>0.77</td>	719.70		722.35	0.77
719.85 0.01 722.50 0.86 719.90 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.55 0.04 723.65 4.92				
719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.55 0.04 723.55 5.604				
720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.55 0.04 4.29 72.65 72.55 0.04 72.65 0.02 721.55 0.04 4.29				
720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.55 0.04 4.29 72.65				
720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.15 3.54 720.50 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.55 0.04 4.92				
720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 721.45 0.01 721.45 0.01 721.55 0.04				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720.15		722.80	1.12
720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.45 4.43 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.25 0.01 723.65 4.92 721.30 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.50 0.02 721.55 0.04				
720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.45 4.43 720.85 0.01 723.50 4.56 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.25 0.01 723.65 4.92 721.25 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.50 0.01 723.65 4.92 721.55 0.04 721.55 0.04				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			723.00	2.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720.60	0.01	723.25	3.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
720.80 0.01 723.45 4.43 720.85 0.01 723.50 4.56 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				-
720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.15 0.01 721.25 0.01 721.20 0.01 721.30 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				
720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.15 0.01 721.25 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.45 0.01 721.45 0.01 721.45 0.02 721.55 0.04 1 1	720.85	0.01	723.50	4.56
721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	721.05			
721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				
721.250.01721.300.01721.350.01721.400.01721.450.01721.500.02721.550.04				
721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				
721.40 0.01 721.45 0.01 721.50 0.02 721.55 0.04				
721.45 0.01 721.50 0.02 721.55 0.04				
721.50 0.02 721.55 0.04				
	721.50	0.02		
121.00 0.00				
	121.00	0.00		

Stormwater Analysis (Rev)

721.55

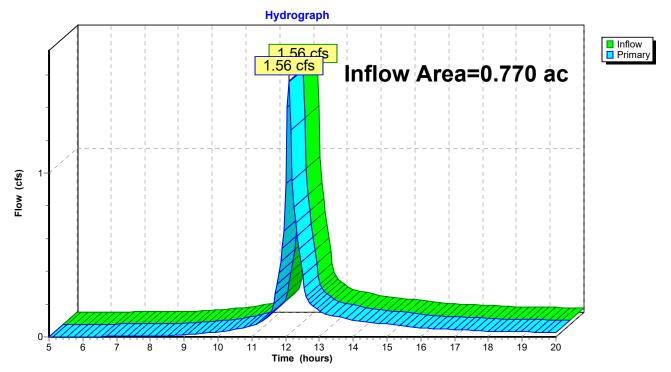
721.60

512

512

978

1,000


Elevation	Surface	Storage	Elevation	Surface	Storago
(feet)	(sq-ft)	(cubic-feet)	(feet)	Surface (sq-ft)	Storage (cubic-feet)
719.00	<u> </u>	0	721.65	512	1,021
719.05	512	10	721.70	512	1,043
719.10	512	20	721.75	512	1,064
719.15	512	31	721.80	512	1,085
719.20	512	41	721.85	512	1,107
719.25	512	51	721.90	512	1,128
719.30	512	61	721.95	512	1,149
719.35	512	72	722.00	512	1,171
719.40	512	82	722.05	512	1,192
719.45	512	92	722.10	512	1,214
719.50	512	102	722.15	512	1,235
719.55	512	124	722.20	512	1,256
719.60	512	145	722.25	512	1,278
719.65	512	167	722.30	512	1,299
719.70 719.75	512 512	188	722.35	512 512	1,320 1,342
719.75	512	209 231	722.40 722.45	512	1,342
719.85	512	252	722.43	512	1,383
719.90	512	273	722.55	512	1,406
719.95	512	295	722.60	512	1,400
720.00	512	316	722.65	512	1,449
720.05	512	337	722.70	512	1,470
720.10	512	359	722.75	512	1,491
720.15	512	380	722.80	512	1,513
720.20	512	402	722.85	512	1,534
720.25	512	423	722.90	512	1,555
720.30	512	444	722.95	512	1,577
720.35	512	466	723.00	512	1,598
720.40	512	487	723.05	512	1,598
720.45	512	508	723.10	512	1,598
720.50	512	530	723.15	512	1,598
720.55 720.60	512 512	551 572	723.20 723.25	512 512	1,598 1,598
720.65	512	594	723.30	512	1,598
720.00	512	615	723.35	512	1,598
720.75	512	637	723.40	512	1,598
720.80	512	658	723.45	512	1,598
720.85	512	679	723.50	512	1,598
720.90	512	701	723.55	512	1,598
720.95	512	722	723.60	512	1,598
721.00	512	743	723.65	512	1,598
721.05	512	765			
721.10	512	786			
721.15	512	808			
721.20	512	829			
721.25	512	850			
721.30	512	872			
721.35	512	893			
721.40 721.45	512 512	914 936			
721.45 721.50	512	936 957			
721.50	512 512	957			

Stage-Area-Storage for Pond 9P: UG-1

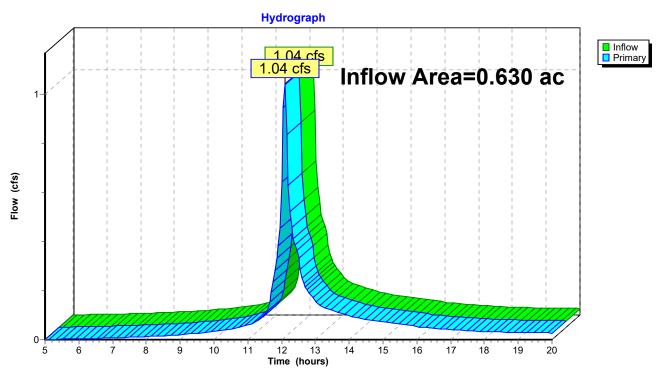
Summary for Link 3L: EDA

Inflow Area =	0.770 ac, 58.44% Impervious, Inflow D	epth > 1.67" for 2-yr event
Inflow =	1.56 cfs @ 12.09 hrs, Volume=	0.107 af
Primary =	1.56 cfs @ 12.09 hrs, Volume=	0.107 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 3L: EDA

Summary for Link 7L: PDA-1

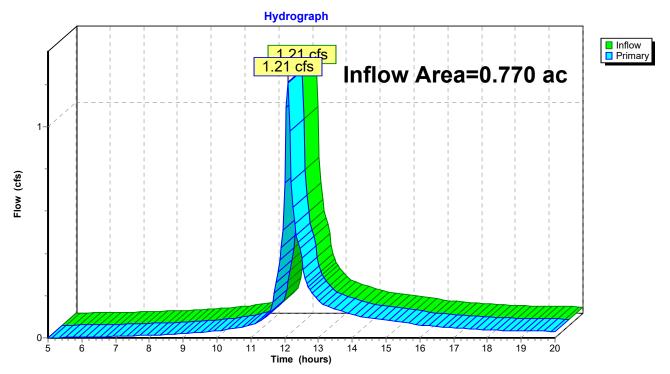

 Inflow Area =
 0.630 ac, 77.78% Impervious, Inflow Depth >
 1.72" for 2-yr event

 Inflow =
 1.04 cfs @
 12.09 hrs, Volume=
 0.090 af

 Primary =
 1.04 cfs @
 12.09 hrs, Volume=
 0.090 af, Atten= 0%, Lag= 0.0 min

 Routed to Link 8L : PDA
 PDA
 1.04 cfs @
 12.09 hrs, Volume=

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



Link 7L: PDA-1

Summary for Link 8L: PDA

Inflow Area =	0.770 ac, 67.53% Impervious, Inflo	w Depth > 1.59"	for 2-yr event
Inflow =	1.21 cfs @ 12.09 hrs, Volume=	0.102 af	
Primary =	1.21 cfs @ 12.09 hrs, Volume=	0.102 af, Atte	en= 0%, Lag= 0.0 min

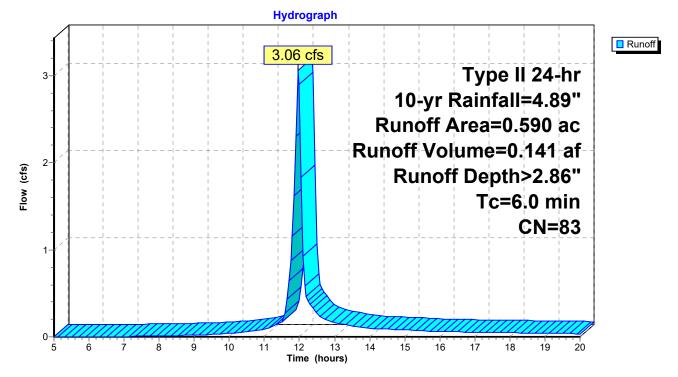
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 8L: PDA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: EDA-1	Runoff Area=0.590 ac 50.85% Impervious Runoff Depth>2.86" Tc=6.0 min CN=83 Runoff=3.06 cfs 0.141 af
Subcatchment2S: EDA-2	Runoff Area=0.180 ac 83.33% Impervious Runoff Depth>3.83" Tc=6.0 min CN=93 Runoff=1.16 cfs 0.057 af
Subcatchment4S: PDA-1A	Runoff Area=0.440 ac 70.45% Impervious Runoff Depth>3.44" Tc=6.0 min CN=89 Runoff=2.63 cfs 0.126 af
Subcatchment5S: PDA-1B	Runoff Area=0.190 ac 94.74% Impervious Runoff Depth>4.11" Tc=6.0 min CN=96 Runoff=1.27 cfs 0.065 af
Subcatchment6S: PDA-2	Runoff Area=0.140 ac 21.43% Impervious Runoff Depth>2.17" Tc=6.0 min CN=75 Runoff=0.57 cfs 0.025 af
Pond 9P: UG-1	Peak Elev=722.30' Storage=1,300 cf Inflow=1.27 cfs 0.065 af Outflow=0.74 cfs 0.043 af
Link 3L: EDA	Inflow=4.22 cfs 0.198 af Primary=4.22 cfs 0.198 af
Link 7L: PDA-1	Inflow=3.22 cfs 0.169 af Primary=3.22 cfs 0.169 af
Link 8L: PDA	Inflow=3.80 cfs 0.195 af Primary=3.80 cfs 0.195 af

Total Runoff Area = 1.540 ac Runoff Volume = 0.415 af Average Runoff Depth = 3.23" 37.01% Pervious = 0.570 ac 62.99% Impervious = 0.970 ac


Summary for Subcatchment 1S: EDA-1

3.06 cfs @ 11.97 hrs, Volume= 0.141 af, Depth> 2.86" Runoff = Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.89"

Area	(ac)	CN	Desc	ription		
0.	300	98	Pave	d parking,	HSG A	
0.	060	60	Woo	ds, Fair, H	SG B	
0.	230	69	50-7	5% Grass	cover, Fair	r, HSG B
0.	0.590 83 Weighted Average					
0.	0.290 49.15% Pervious Area					
0.	0.300 50.85% Impervious Area					
-					• •	
Tc	Lengt		Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Subcatchment 1S: EDA-1

Summary for Subcatchment 2S: EDA-2

Runoff = 1.16 cfs @ 11.96 hrs, Volume= 0.057 af, Depth> 3.83" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.89"

Area (ac) CN 0.150 98 0.030 69 0.180 93 0.030 030 0.150 7 Tc Length (min) (feet) 6.0 6.0	Paved parking50-75% Grass	cover, Fair, rage ous Area vious Area Capacity (cfs)	HSG B Description Direct Entry			
Elow (cfs)	7 8 9 10	Subcatch Hydrogr 1.16 cf	s Runc I 13 14	10-yr F Inoff A off Vol	=4.89" 180 ac 057 af	Runoff

Tc=6.0 min

CN=89

19

20

0.126 af, Depth> 3.44"

Summary for Subcatchment 4S: PDA-1A

Runoff = 2.63 cfs @ 11.96 hrs, Volume= Routed to Link 7L : PDA-1

Flow

0

5

6

ż

8

ģ

10

11

12 13 Time (hours) 14

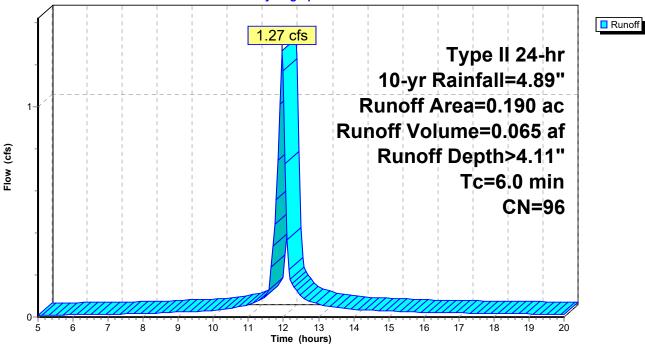
15

16

17

18

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.89"

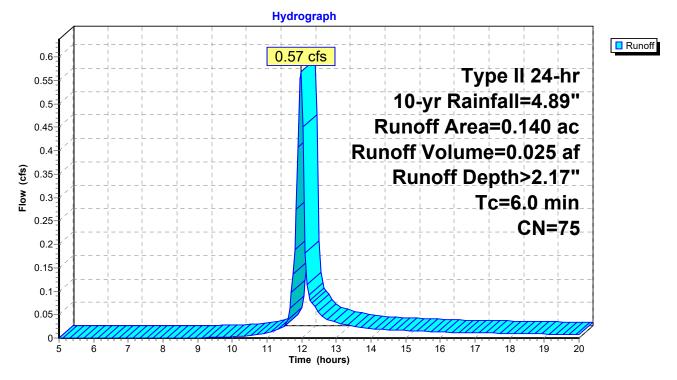

Area (ac) CN	Description	on					
	310 98							
0.1	130 69	50-75% 0	Grass	cover, Fair	, HSG B			
	440 89							
	130	29.55% F						
0.3	310	70.45% I	mperv	ious Area				
Тс	Length	Slope Vel	ocity	Capacity	Description			
(min)	(feet)		/sec)	(cfs)	•			
6.0					Direct Entr	ſy,		
	Subcatchment 4S: PDA-1A							
	Hydrograph							
ſ							Runoff	
-				2.63 c	ofs			
						Type II 24-hr		
			1			10-yr Rainfall=4.89"		
-	J	I I 			D	unoff Area=0.440 ac		
2				1				
-					Run	off Volume=0.126 af		
(cfs)						Runoff Depth>3.44"		
<u> </u>			1	: : <mark>/</mark>				

Summary for Subcatchment 5S: PDA-1B

Runoff = 1.27 cfs @ 11.96 hrs, Volume= Routed to Pond 9P : UG-1 0.065 af, Depth> 4.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.89"

Area (ac) C	N Des	escription			
0.180	98 Pav	aved parking, HSG A			
0.010 6	<u>59 50-</u>	0-75% Grass cover, Fair, HSG B			
0.190	96 We	eighted Average			
0.010	5.20	26% Pervious Area			
0.180	94.	I.74% Impervious Area			
Tc Length (min) (feet)	Slope (ft/ft)				
6.0		Direct Entry,			
Subcatchment 5S: PDA-1B Hydrograph					


Summary for Subcatchment 6S: PDA-2

Runoff = 0.57 cfs @ 11.97 hrs, Volume= 0.025 af, Depth> 2.17" Routed to Link 8L : PDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.89"

	Area	(ac)	CN	Desc	ription		
	0.	030	98	Pave	d parking,	HSG A	
_	0.	110	69	50-7	5% Grass	cover, Fair	r, HSG B
	0.	140	75	Weig	hted Aver	age	
	0.	110		78.5	7% Pervio	us Area	
	0.	030		21.43	3% Imperv	ious Area	
	_					•	— • • •
	Tc	Leng		Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,
							-

Subcatchment 6S: PDA-2

Summary for Pond 9P: UG-1

 Inflow Area =
 0.190 ac, 94.74% Impervious, Inflow Depth > 4.11" for 10-yr event

 Inflow =
 1.27 cfs @
 11.96 hrs, Volume=
 0.065 af

 Outflow =
 0.74 cfs @
 12.05 hrs, Volume=
 0.043 af, Atten= 41%, Lag= 5.5 min

 Primary =
 0.74 cfs @
 12.05 hrs, Volume=
 0.043 af

 Routed to Link 7L : PDA-1
 0.043 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 722.30' @ 12.05 hrs Surf.Area= 512 sf Storage= 1,300 cf

Plug-Flow detention time= 120.4 min calculated for 0.043 af (67% of inflow) Center-of-Mass det. time= 51.1 min (787.3 - 736.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	719.00'	102 cf	8.00'W x 64.00'L x 4.67'H Field A
			2,389 cf Overall - 2,133 cf Embedded = 256 cf x 40.0% Voids
#2A	719.50'	1,496 cf	retain_it retain_it 3.5' x 8 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			1 Rows adjusted for 110.5 cf perimeter wall
		1 598 cf	Total Available Storage

1,598 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	718.25'	12.0" Round Culvert
	-		L= 122.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 718.25' / 715.85' S= 0.0197 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	722.75'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	721.45'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	719.00'	0.520 in/hr Exfiltration over Surface area
	-		Conductivity to Groundwater Elevation = 715.00'

Primary OutFlow Max=0.74 cfs @ 12.05 hrs HW=722.30' (Free Discharge)

-1=Culvert (Passes 0.73 cfs of 5.62 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

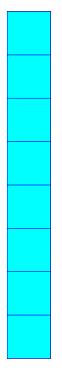
-3=Orifice/Grate (Orifice Controls 0.73 cfs @ 3.72 fps)

-4=Exfiltration (Controls 0.01 cfs)

Pond 9P: UG-1 - Chamber Wizard Field A

Chamber Model = retain_it retain_it 3.5' (retain-it®)

Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf 1 Rows adjusted for 110.5 cf perimeter wall


8 Chambers/Row x 8.00' Long = 64.00' Row Length 1 Rows x 96.0" Wide = 8.00' Base Width 6.0" Stone Base + 50.0" Chamber Height = 4.67' Field Height

6.1 cf Sidewall x 8 x 2 + 6.1 cf Endwall x 1 x 2 = 110.5 cf Perimeter Wall 8 Chambers x 200.8 cf - 110.5 cf Perimeter wall = 1,495.7 cf Chamber Storage 8 Chambers x 266.7 cf = 2,133.3 cf Displacement

2,389.3 cf Field - 2,133.3 cf Chambers = 256.0 cf Stone x 40.0% Voids = 102.4 cf Stone Storage

Chamber Storage + Stone Storage = 1,598.1 cf = 0.037 afOverall Storage Efficiency = 66.9%Overall System Size = $64.00' \times 8.00' \times 4.67'$

8 Chambers 88.5 cy Field 9.5 cy Stone

Hydrograph Inflow 1.27 cfs Primary Inflow Area=0.190 ac Peak Elev=722.30' Storage=1,300 cf 1 0.74 cfs Flow (cfs) 0-6 ź 8 9 10 11 12 14 15 16 17 19 20 5 13 18 Time (hours)

Pond 9P: UG-1

Stormwater Analysis (Rev)Type IIPrepared by Solli Engineering - Norwood, MAHydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions LLC

Type II 24-hr 10-yr Rainfall=4.89" Printed 2/8/2024 Page 29

Stage-Discharge for Pond 9P: UG-1

Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)
719.00	0.00	721.65	0.12
719.05	0.01	721.70	0.18
719.10	0.01	721.75	0.24
719.15	0.01	721.80	0.31
719.20 719.25	0.01 0.01	721.85 721.90	0.37 0.44
719.30	0.01	721.90	0.44
719.35	0.01	722.00	0.53
719.40	0.01	722.05	0.57
719.45	0.01	722.10	0.61
719.50	0.01	722.15	0.65
719.55 719.60	0.01 0.01	722.20 722.25	0.68 0.71
719.65	0.01	722.23	0.74
719.70	0.01	722.35	0.77
719.75	0.01	722.40	0.80
719.80	0.01	722.45	0.83
719.85	0.01	722.50	0.86
719.90 719.95	0.01 0.01	722.55 722.60	0.88 0.91
720.00	0.01	722.65	0.91
720.05	0.01	722.70	0.96
720.10	0.01	722.75	0.98
720.15	0.01	722.80	1.12
720.20	0.01	722.85	1.35
720.25 720.30	0.01 0.01	722.90 722.95	1.64 1.99
720.35	0.01	723.00	2.37
720.40	0.01	723.05	2.80
720.45	0.01	723.10	3.26
720.50	0.01	723.15	3.54
720.55	0.01	723.20	3.71
720.60 720.65	0.01 0.01	723.25 723.30	3.86 4.01
720.00	0.01	723.35	4.16
720.75	0.01	723.40	4.29
720.80	0.01	723.45	4.43
720.85	0.01	723.50	4.56
720.90	0.01	723.55	4.68
720.95 721.00	0.01 0.01	723.60 723.65	4.80 4.92
721.00	0.01	725.05	4.52
721.10	0.01		
721.15	0.01		
721.20	0.01		
721.25 721.30	0.01		
721.30 721.35	0.01 0.01		
721.40	0.01		
721.45	0.01		
721.50	0.02		
721.55	0.04		
721.60	0.08		

Stormwater Analysis (Rev)

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
719.00	512	0	721.65	512	1,021
719.05	512	10	721.70	512	1,043
719.10	512	20	721.75	512	1,064
719.15	512	31	721.80	512	1,085
719.20	512	41	721.85	512	1,107
719.25	512	51	721.90	512	1,128
719.30	512	61	721.95	512	1,149
719.35	512	72	722.00	512	1,171
719.40	512	82	722.05	512	1,192
719.45	512	92	722.10	512	1,214
719.50	512	102	722.15	512	1,235
719.55	512	124	722.20	512	1,256
719.60	512	145	722.25	512	1,278
719.65	512	167	722.30	512	1,299
719.70	512	188	722.35	512	1,320
719.75	512	209	722.40	512	1,342
719.80	512	231	722.45	512	1,363
719.85	512	252	722.50	512	1,384
719.90	512	273	722.55	512	1,406
719.95	512	295	722.60	512	1,427
720.00	512	316	722.65	512	1,449
720.05	512	337	722.70	512	1,470
720.10	512	359	722.75	512	1,491
720.15	512	380	722.80	512	1,513
720.20	512	402	722.85	512	1,534
720.25	512	423	722.90	512	1,555
720.30	512	444	722.95	512	1,577
720.35	512	466	723.00	512	1,598
720.40	512	487	723.05	512	1,598
720.45	512	508	723.10	512	1,598
720.50	512	530	723.15	512	1,598
720.55	512	551	723.20	512	1,598
720.60	512	572	723.25	512	1,598
720.65	512	594	723.30	512	1,598
720.70	512	615	723.35	512	1,598
720.75	512	637	723.40	512	1,598
720.80	512	658	723.45	512	1,598
720.85	512	679	723.50	512	1,598
720.90	512	701	723.55	512	1,598
720.95	512	722	723.60	512	1,598
721.00	512	743	723.65	512	1,598
721.05	512	765			
721.10	512	786			
721.15	512	808			
721.20	512	829			
721.25	512	850			
721.30	512	872			
721.35	512	893			
721.40	512	914			
721.45	512	936			

957

978

1,000

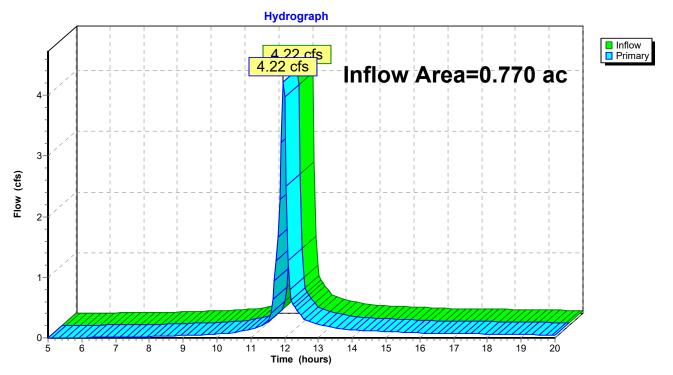
512

512

512

721.50

721.55


721.60

Stage-Area-Storage for Pond 9P: UG-1

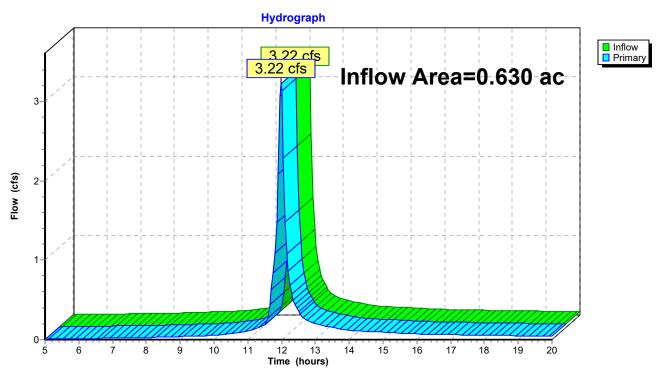
Summary for Link 3L: EDA

Inflow Area =	0.770 ac,	58.44% Impervious,	Inflow Depth >	3.09" for 10-yr event	
Inflow =	4.22 cfs @	11.97 hrs, Volume	e= 0.198 a	af	
Primary =	4.22 cfs @	11.97 hrs, Volume	e= 0.198 a	af, Atten= 0%, Lag= 0.0 r	min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 3L: EDA

Summary for Link 7L: PDA-1

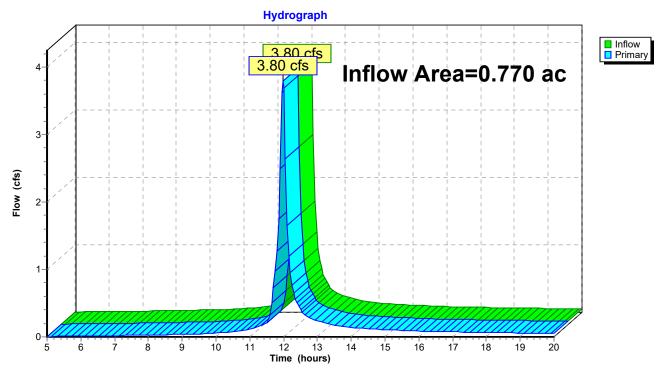

 Inflow Area =
 0.630 ac, 77.78% Impervious, Inflow Depth > 3.23" for 10-yr event

 Inflow =
 3.22 cfs @
 11.98 hrs, Volume=
 0.169 af

 Primary =
 3.22 cfs @
 11.98 hrs, Volume=
 0.169 af, Atten= 0%, Lag= 0.0 min

 Routed to Link 8L : PDA
 Primary
 11.98 hrs, Volume=
 0.169 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



Link 7L: PDA-1

Summary for Link 8L: PDA

Inflow Area	a =	0.770 ac, 67.53% Impervious, Inflow Depth > 3.03" for 10-yr even	t
Inflow	=	3.80 cfs @ 11.98 hrs, Volume= 0.195 af	
Primary	=	3.80 cfs $\overline{@}$ 11.98 hrs, Volume= 0.195 af, Atten= 0%, Lag= 0	.0 min

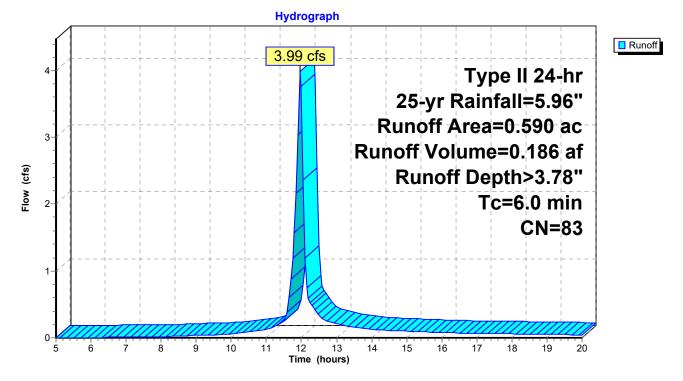
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 8L: PDA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: EDA-1	Runoff Area=0.590 ac 50.85% Impervious Runoff Depth>3.78" Tc=6.0 min CN=83 Runoff=3.99 cfs 0.186 af
Subcatchment2S: EDA-2	Runoff Area=0.180 ac 83.33% Impervious Runoff Depth>4.81" Tc=6.0 min CN=93 Runoff=1.43 cfs 0.072 af
Subcatchment4S: PDA-1A	Runoff Area=0.440 ac 70.45% Impervious Runoff Depth>4.40" Tc=6.0 min CN=89 Runoff=3.32 cfs 0.162 af
Subcatchment5S: PDA-1B	Runoff Area=0.190 ac 94.74% Impervious Runoff Depth>5.08" Tc=6.0 min CN=96 Runoff=1.55 cfs 0.081 af
Subcatchment6S: PDA-2	Runoff Area=0.140 ac 21.43% Impervious Runoff Depth>3.00" Tc=6.0 min CN=75 Runoff=0.78 cfs 0.035 af
Pond 9P: UG-1	Peak Elev=722.71' Storage=1,473 cf Inflow=1.55 cfs 0.081 af Outflow=0.96 cfs 0.059 af
Link 3L: EDA	Inflow=5.42 cfs 0.258 af Primary=5.42 cfs 0.258 af
Link 7L: PDA-1	Inflow=4.15 cfs 0.220 af Primary=4.15 cfs 0.220 af
Link 8L: PDA	Inflow=4.93 cfs 0.255 af Primary=4.93 cfs 0.255 af

Total Runoff Area = 1.540 ac Runoff Volume = 0.535 af Average Runoff Depth = 4.17" 37.01% Pervious = 0.570 ac 62.99% Impervious = 0.970 ac


Summary for Subcatchment 1S: EDA-1

Runoff = 3.99 cfs @ 11.97 hrs, Volume= 0.186 af, Depth> 3.78" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.96"

Area	(ac)	CN	Desc	ription			
0.	300	98	Pave	d parking,	HSG A		
0.	.060	60	Woo	Woods, Fair, HSG B			
0.	.230	69	50-7	5% Grass	cover, Fair	r, HSG B	
0.	590	83	Weig	hted Aver	age		
0.	0.290 49.15% Pervious Area				us Area		
0.	300		50.8	5% Imperv	vious Area		
Та	Longt	h (Clana	Valacity	Conosity	Description	
Tc (mim)	Lengt		Slope	Velocity	Capacity	Description	
(min)	(fee	()	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry,	

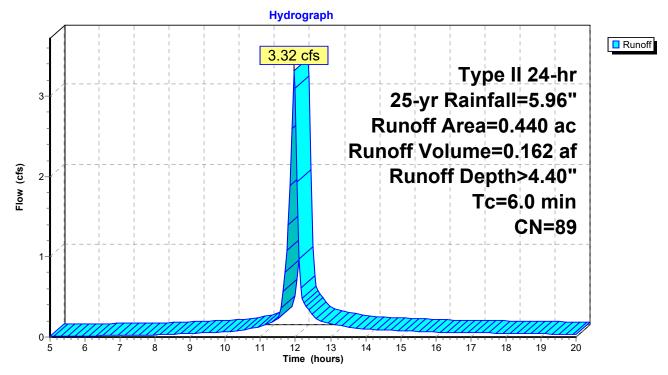
Subcatchment 1S: EDA-1

Summary for Subcatchment 2S: EDA-2

Runoff = 1.43 cfs @ 11.96 hrs, Volume= 0.072 af, Depth> 4.81" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.96"

Area (ac) CN Description							
0.150 98 Paved parking, HSG A							
0.030 69 50-75% Grass cover, Fair, HSG B 0.180 93 Weighted Average							
0.180 93 Weighted Average 0.030 16.67% Pervious Area							
0.150 83.33% Impervious Area							
Tc Length Slope Velocity Capacity De (min) (feet) (ft/ft) (ft/sec) (cfs)	scription						
	ect Entry,						
	ent 2S: EDA-2						
Hydrograph)						
	Runoff						
1.43 cfs	Type II 24 br						
	Type II 24-hr						
	25-yr Rainfall=5.96"						
	Runoff Area=0.180 ac						
	Runoff Volume=0.072 af						
(cts)	Runoff Depth>4.81"						
Flow (cfs)	Tc=6.0 min						
ш. Ц. П.							
	CN=93						
0- <mark>14-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4</mark>							
Time (nou							


Summary for Subcatchment 4S: PDA-1A

Runoff = 3.32 cfs @ 11.96 hrs, Volume= Routed to Link 7L : PDA-1 0.162 af, Depth> 4.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.96"

Area	(ac)	CN	Desc	ription			
0	.310	98	Pave	d parking	HSG A		
0	.130	69	50-7	50-75% Grass cover, Fair, HSG B			
0	.440	89	Weig	hted Aver	age		
0.130 29.55% Pervious Area							
0	0.310 70.45% Impervious Area			5% Imperv	∕ious Area		
-			<u>.</u>		.		
Tc	Leng		Slope	Velocity	Capacity	Description	
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry,	

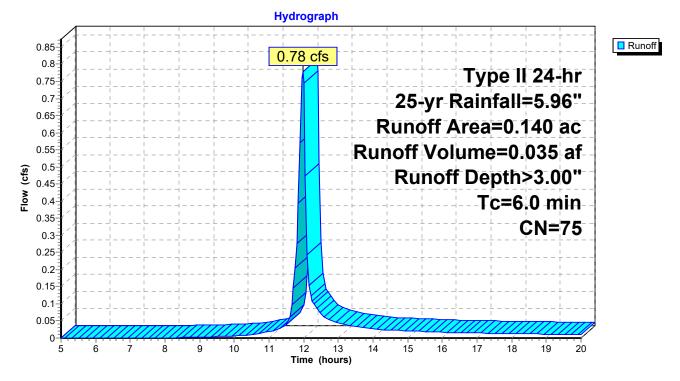
Subcatchment 4S: PDA-1A

Summary for Subcatchment 5S: PDA-1B

Runoff = 1.55 cfs @ 11.96 hrs, Volume= Routed to Pond 9P : UG-1 0.081 af, Depth> 5.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.96"

Area (ac) CN 0.180 98 0.010 69 0.190 96 0.010 0.180 Tc Length (min) (feet) 6.0	 Paved parking, HSG A 50-75% Grass cover, Weighted Average 5.26% Pervious Area 94.74% Impervious A Slope Velocity Capado 	Fair, HSG B ea
		tchment 5S: PDA-1B
Elow (cfs)		55 cfs Type II 24-hr 25-yr Rainfall=5.96" Runoff Area=0.190 ac Runoff Volume=0.081 af Runoff Depth>5.08" Tc=6.0 min CN=96


Summary for Subcatchment 6S: PDA-2

Runoff = 0.78 cfs @ 11.97 hrs, Volume= 0.035 af, Depth> 3.00" Routed to Link 8L : PDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.96"

	Area	(ac)	CN	Desc	ription		
	0.	030	98	Pave	d parking,	HSG A	
	0.	110	69	50-7	5% Grass	cover, Fair	, HSG B
	0.	140	75	Weig	hted Aver	age	
	0.	110		78.5	7% Pervio	us Area	
	0.	030		21.43	3% Imperv	vious Area	
	та	المعام	4 ha - 1	Clana	Valacity	Conositu	Description
	Tc	Leng		Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 6S: PDA-2

Summary for Pond 9P: UG-1

Inflow Area = 0.190 ac, 94.74% Impervious, Inflow Depth > 5.08" for 25-yr event Inflow 1.55 cfs @ 11.96 hrs, Volume= 0.081 af = 0.96 cfs @ 12.05 hrs, Volume= Outflow = 0.059 af, Atten= 38%, Lag= 5.2 min 0.96 cfs @ 12.05 hrs, Volume= Primary = 0.059 af Routed to Link 7L : PDA-1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 722.71' @ 12.05 hrs Surf.Area= 512 sf Storage= 1,473 cf

Plug-Flow detention time= 112.0 min calculated for 0.059 af (73% of inflow) Center-of-Mass det. time= 48.6 min (782.7 - 734.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	719.00'	102 cf	8.00'W x 64.00'L x 4.67'H Field A
			2,389 cf Overall - 2,133 cf Embedded = 256 cf x 40.0% Voids
#2A	719.50'	1,496 cf	retain_it retain_it 3.5' x 8 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			1 Rows adjusted for 110.5 cf perimeter wall
		1 598 cf	Total Available Storage

1,598 CT I Otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices				
#1	Primary	718.25'	12.0" Round Culvert				
	-		L= 122.0' CPP, projecting, no headwall, Ke= 0.900				
			nlet / Outlet Invert= 718.25' / 715.85' S= 0.0197 '/' Cc= 0.900				
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf				
#2	Device 1	722.75'	12.0" Horiz. Orifice/Grate C= 0.600				
			Limited to weir flow at low heads				
#3	Device 1	721.45'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#4	Primary	719.00'	0.520 in/hr Exfiltration over Surface area				
	-		Conductivity to Groundwater Elevation = 715.00'				

Primary OutFlow Max=0.96 cfs @ 12.05 hrs HW=722.70' (Free Discharge)

-1=Culvert (Passes 0.95 cfs of 5.94 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

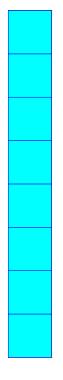
-3=Orifice/Grate (Orifice Controls 0.95 cfs @ 4.82 fps)

4=Exfiltration (Controls 0.01 cfs)

Pond 9P: UG-1 - Chamber Wizard Field A

Chamber Model = retain_it retain_it 3.5' (retain-it®)

Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf 1 Rows adjusted for 110.5 cf perimeter wall


8 Chambers/Row x 8.00' Long = 64.00' Row Length 1 Rows x 96.0" Wide = 8.00' Base Width 6.0" Stone Base + 50.0" Chamber Height = 4.67' Field Height

6.1 cf Sidewall x 8 x 2 + 6.1 cf Endwall x 1 x 2 = 110.5 cf Perimeter Wall 8 Chambers x 200.8 cf - 110.5 cf Perimeter wall = 1,495.7 cf Chamber Storage 8 Chambers x 266.7 cf = 2,133.3 cf Displacement

2,389.3 cf Field - 2,133.3 cf Chambers = 256.0 cf Stone x 40.0% Voids = 102.4 cf Stone Storage

Chamber Storage + Stone Storage = 1,598.1 cf = 0.037 afOverall Storage Efficiency = 66.9%Overall System Size = $64.00' \times 8.00' \times 4.67'$

8 Chambers 88.5 cy Field 9.5 cy Stone

Hydrograph Inflow
Primary 1.55 cfs Inflow Area=0.190 ac Peak Elev=722.71' Storage=1,473 cf 0.96 cfs Flow (cfs) 0-6 7 8 9 10 11 14 15 16 17 18 19 20 5 12 13 Time (hours)

Pond 9P: UG-1

Stormwater Analysis (Rev)Type IIPrepared by Solli Engineering - Norwood, MAHydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions LLC

Type II 24-hr 25-yr Rainfall=5.96" Printed 2/8/2024 Page 43

Stage-Discharge for Pond 9P: UG-1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Primary	Elevation	Primary
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.10 0.01 721.75 0.24 719.15 0.01 721.80 0.31 719.25 0.01 721.85 0.37 719.25 0.01 721.90 0.44 719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.65 0.01 722.25 0.71 719.55 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.40 0.80 719.85 0.01 722.40 0.80 719.85 0.01 722.55 0.88 719.95 0.01 722.65 0.93 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.45 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.65 0.01 723.30 4.61 720.40 0.01 723.55 4.68 <td></td> <td></td> <td></td> <td></td>				
719.15 0.01 721.80 0.31 719.25 0.01 721.90 0.44 719.35 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.00 0.53 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.65 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.75 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.95 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.40 0.01 723.05 2.80 720.50 0.01 723.10 3.26 720.40 0.01 723.30 4.01 720.50 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.25 0.01 721.90 0.44 719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.55 0.01 722.10 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.20 0.68 719.65 0.01 722.30 0.74 719.75 0.01 722.40 0.80 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.95 0.01 722.45 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.96 720.15 0.01 722.85 1.35 720.25 0.01 722.85 1.35 720.25 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.45 0.01 723.20 3.71 720.60 0.01 723.35 4.16 720.75 0.01 723.35 4.68 720.65 0.01 723.35 4.68 720.75 0.01 723.45 4.43 720.85 0.01 723.65 4.80 <td></td> <td></td> <td></td> <td></td>				
719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.00 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.85 0.01 722.40 0.80 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.85 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.05 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.45 0.01 723.10 3.26 720.45 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.45 4.43 720.85 0.01 723.45 4.43 720.85 0.01 723.45 4.68 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.45 0.01 722.10 0.61 719.50 0.01 722.15 0.65 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.80 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.90 1.64 720.20 0.01 722.90 1.64 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.75 0.01 723.30 4.01 720.80 0.01 723.40 4.29 720.80 0.01 723.45 4.43 720.85 0.01 723.65 4.92 720.80 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.50 0.01 722.15 0.65 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.85 1.35 720.25 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.30 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.55 0.01 722.20 0.68 719.60 0.01 722.30 0.74 719.65 0.01 722.30 0.74 719.75 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.20 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.95 1.99 720.35 0.01 722.95 1.99 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.80 0.01 723.55 4.68 720.95 0.01 723.55 4.68 720.75 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td>-</td> <td></td>			-	
719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.25 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.75 0.01 723.35 4.68 720.95 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.55 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.35 4.68 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.55 0.01 723.30 4.01 720.60 0.01 723.35 4.16 720.75 0.01 723.35 4.16 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.65 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.50 4.56 720.90 0.01 723.60 4.80 721.05 0.01 723.60 4.80 721.10 0.01 723.65 4.92 721.20 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.02 0.02				
720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.01 723.65				
720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.01 723.65				
720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.50 0.02				
720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.50 4.56 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.50 0.02 0.02 0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.45 4.43 720.85 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.20 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.50 0.02 0.02 0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720.75	0.01		4.29
720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 0.02 0.01				
720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.45 0.01 721.35 0.01 721.35 0.01 721.45 0.01 721.45 0.01 721.50 0.02				
721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 0.02 0.01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			120.00	
721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.40 0.01 721.45 0.01 721.50 0.02				
721.50 0.02				
721.55 0.04 721.60 0.08				
121.00 0.00	121.00	0.00		

Stormwater Analysis (Rev)

721.55

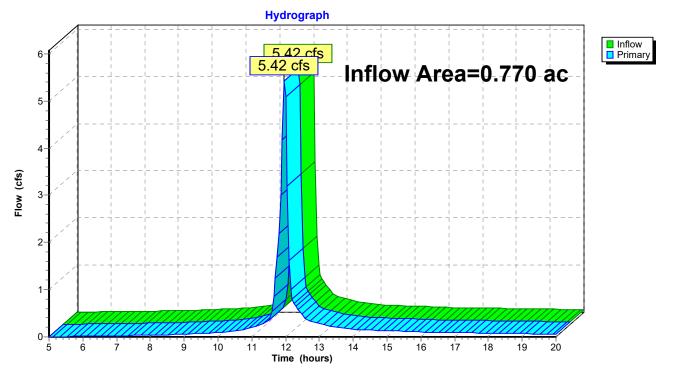
721.60

512

512

978

1,000


Flovetion	Surface	Storage	Elevation	Surface	Storage
Elevation	Surface	Storage		Surface	Storage
(feet)	(sq-ft) 512	(cubic-feet)	(feet) 721.65	<u>(sq-ft)</u> 512	(cubic-feet)
719.00 719.05	512	0 10	721.05	512	1,021 1,043
719.00	512	20	721.75	512	1,043
719.10	512	31	721.80	512	1,085
719.13	512	41	721.85	512	1,005
719.20	512	51	721.85	512	1,107
719.23	512	61	721.90	512	1,120
719.35	512	72	722.00	512	1,149
719.33	512	82	722.00	512	1,192
719.40	512	92	722.00	512	1,192
719.40	512	102	722.10	512	1,235
719.55	512	124	722.20	512	1,255
719.60	512	145	722.25	512	1,278
719.65	512	143	722.30	512	1,299
719.70	512	188	722.35	512	1,320
719.75	512	209	722.40	512	1,342
719.80	512	200	722.45	512	1,363
719.85	512	252	722.50	512	1,384
719.90	512	273	722.55	512	1,406
719.95	512	295	722.60	512	1,400
720.00	512	316	722.65	512	1,449
720.05	512	337	722.70	512	1,470
720.10	512	359	722.75	512	1,491
720.15	512	380	722.80	512	1,513
720.20	512	402	722.85	512	1,534
720.25	512	423	722.90	512	1,555
720.30	512	444	722.95	512	1,577
720.35	512	466	723.00	512	1,598
720.40	512	487	723.05	512	1,598
720.45	512	508	723.10	512	1,598
720.50	512	530	723.15	512	1,598
720.55	512	551	723.20	512	1,598
720.60	512	572	723.25	512	1,598
720.65	512	594	723.30	512	1,598
720.70	512	615	723.35	512	1,598
720.75	512	637	723.40	512	1,598
720.80	512	658	723.45	512	1,598
720.85	512	679	723.50	512	1,598
720.90	512	701	723.55	512	1,598
720.95	512	722	723.60	512	1,598
721.00	512	743	723.65	512	1,598
721.05	512	765			
721.10	512	786			
721.15	512	808			
721.20	512	829			
721.25	512	850			
721.30	512	872			
721.35	512	893			
721.40	512	914			
721.45	512	936			
721.50	512	957			

Stage-Area-Storage for Pond 9P: UG-1

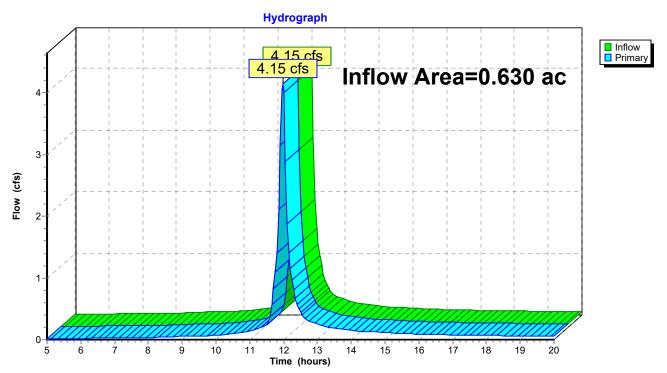
Summary for Link 3L: EDA

Inflow Area	a =	0.770 ac, 58.44% Impervious, Inflow Depth > 4.02" for 25-yr event	
Inflow	=	5.42 cfs @ 11.97 hrs, Volume= 0.258 af	
Primary	=	5.42 cfs $\hat{@}$ 11.97 hrs, Volume= 0.258 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 3L: EDA

Summary for Link 7L: PDA-1

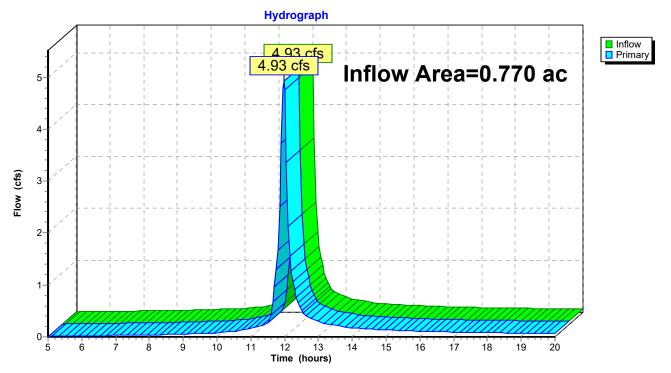

 Inflow Area =
 0.630 ac, 77.78% Impervious, Inflow Depth > 4.19" for 25-yr event

 Inflow =
 4.15 cfs @ 11.97 hrs, Volume=
 0.220 af

 Primary =
 4.15 cfs @ 11.97 hrs, Volume=
 0.220 af, Atten= 0%, Lag= 0.0 min

 Routed to Link 8L : PDA
 0.200 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



Link 7L: PDA-1

Summary for Link 8L: PDA

Inflow Area =	=	0.770 ac, 67.53% Impervious, Inflow Depth > 3.98" for 25-yr event	
Inflow =	=	4.93 cfs @ 11.97 hrs, Volume= 0.255 af	
Primary =	=	4.93 cfs @ 11.97 hrs, Volume= 0.255 af, Atten= 0%, Lag= 0.0 m	nin

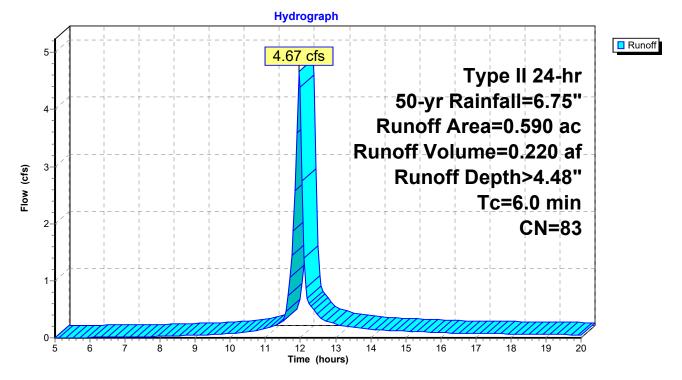
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 8L: PDA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EDA-1	Runoff Area=0.590 ac 50.85% Impervious Runoff Depth>4.48" Tc=6.0 min CN=83 Runoff=4.67 cfs 0.220 af
Subcatchment2S: EDA-2	Runoff Area=0.180 ac 83.33% Impervious Runoff Depth>5.53" Tc=6.0 min CN=93 Runoff=1.63 cfs 0.083 af
Subcatchment4S: PDA-1A	Runoff Area=0.440 ac 70.45% Impervious Runoff Depth>5.12" Tc=6.0 min CN=89 Runoff=3.82 cfs 0.188 af
Subcatchment 5S: PDA-1B	Runoff Area=0.190 ac 94.74% Impervious Runoff Depth>5.80" Tc=6.0 min CN=96 Runoff=1.76 cfs 0.092 af
Subcatchment6S: PDA-2	Runoff Area=0.140 ac 21.43% Impervious Runoff Depth>3.64" Tc=6.0 min CN=75 Runoff=0.94 cfs 0.042 af
Pond 9P: UG-1	Peak Elev=722.86' Storage=1,538 cf Inflow=1.76 cfs 0.092 af Outflow=1.35 cfs 0.070 af
Link 3L: EDA	Inflow=6.31 cfs 0.303 af Primary=6.31 cfs 0.303 af
Link 7L: PDA-1	Inflow=4.94 cfs 0.258 af Primary=4.94 cfs 0.258 af
Link 8L: PDA	Inflow=5.88 cfs 0.300 af Primary=5.88 cfs 0.300 af

Total Runoff Area = 1.540 ac Runoff Volume = 0.626 af Average Runoff Depth = 4.87" 37.01% Pervious = 0.570 ac 62.99% Impervious = 0.970 ac


Summary for Subcatchment 1S: EDA-1

Runoff = 4.67 cfs @ 11.97 hrs, Volume= 0.220 af, Depth> 4.48" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.75"

Area	(ac)	CN	Desc	ription			
0	.300	98	Pave	d parking,	HSG A		
0	.060	60	Woo	ds, Fair, H	SG B		
0	.230	69	50-7	5% Grass	cover, Fair	ir, HSG B	
0	.590	83	Weig	hted Aver	age		
0	0.290 49.15% Pervious Area						
0	0.300 50.85% Impervious Area			5% Imperv	vious Area		
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•	
6.0						Direct Entry,	

Subcatchment 1S: EDA-1

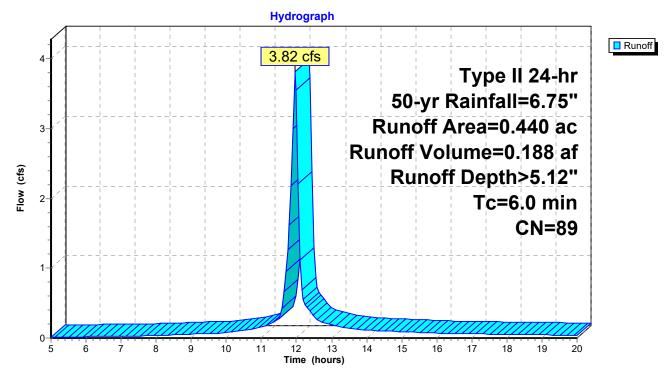
Summary for Subcatchment 2S: EDA-2

Runoff = 1.63 cfs @ 11.96 hrs, Volume= 0.083 Routed to Link 3L : EDA

0.083 af, Depth> 5.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.75"

Area	(ac)	CN E	Descriptio	on										
	.150		aved pa				_							
-	.030				over, Fai	r, HSG	В							
	.180		Veighted											
	.030 .150		6.67% F		s Area ous Area									
0.	.150	0	5.5570 11	npervic	Jus Alea									
Tc	Lengtl	h Slo	pe Velo	ocity	Capacity	Desc	riptior	ı						
(min)	(feet			sec)	(cfs)		•							
6.0						Direc	t Ent	ry,						
				_)	la	± 00.							
				2	Subcate	-	t 25:	EDA	\- 2					
					Hydro	graph								
f			1			i I			i		1	1		Runoff
					1.63	<mark>cfs</mark>					1			
-									i	Тур	e II	24-	hr	
								50-	vr 🖁	Rainf	fall	=6 7	5"	
-								1	- I		1			
								Runo	1	1		1		
							Rur	loff	Volu	umė	=0.(083	af	
(sj 1–								Ru	noff	Dep	oth>	>5.5	3"	
-1 fow (cfs)								IXM		17	- I			
E -			i I	i i I I				i I	i I		;=6.	0 m	in	
											Ć)N=	93	
-									i		i	i		
											1			
									i		1	i I		
-											1			
0- <mark>1</mark> 5	6	7	8 9	10	11 12		14	15	/ 16	17	18	19	20	
					Tim	e (hours)								


Summary for Subcatchment 4S: PDA-1A

Runoff = 3.82 cfs @ 11.96 hrs, Volume= Routed to Link 7L : PDA-1 0.188 af, Depth> 5.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.75"

	Area	(ac)	CN	Desc	ription		
	0.	310	98	Pave	d parking,	HSG A	
	0.	130	69	50-7	5% Grass	cover, Fair	, HSG B
	0.	440	89	Weig	hted Aver	age	
	0.	130		29.5	5% Pervio	us Area	
	0.	310		70.4	5% Imperv	vious Area	
	_					•	— • • •
	Tc	Leng		Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,
							-

Subcatchment 4S: PDA-1A

Summary for Subcatchment 5S: PDA-1B

Runoff = 1.76 cfs @ 11.96 hrs, Volume= 0.092 Routed to Pond 9P : UG-1

0.092 af, Depth> 5.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.75"

Area		CN		cription										
	.180 .010	98 69		ed parking 5% Grass			GВ							
0	.190 .010 .180	96	Weię 5.26	ghted Ave % Perviou 4% Imper	erage us Area									
Tc (min)	Leną (fe		Slope (ft/ft)	Velocity (ft/sec)		ity Des fs)	scriptio	า						
6.0						Dire	ect Ent	ry,						
					Subca	tchmei	nt 5S:	PDA	-1B					
					Ну	drograph								
Flow (cfs)						76 cfs		Runc noff		rea= ume Dep	fall= =0.1 =0. oth> =6.	=6.7 90 092	5" ac af 0"	Runoff
- - - 5	6 6	7	8	9 10		12 13 Time (hour		15	16	17	18	19	20	

Summary for Subcatchment 6S: PDA-2

Runoff = 0.94 cfs @ 11.97 hrs, Volume= Routed to Link 8L : PDA

0.042 af, Depth> 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.75"

Area	(ac) C	N Dese	cription									
			ed parking									
-				cover, Fair	, HSG E	3						
	.140 7		ghted Aver 7% Pervio									
	.030			vious Area								
-				o	_							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	ption						
6.0	(1001)	(10/10)	(18300)	(013)	Direct	Entr	ν.					
				_			-					
				Subcatc	hment	6S:	PDA	-2				
		1		Hydro	graph				1			
. [<u>.</u>							Runoff
1-*				0.94	<mark>cfs</mark>							
									Type II			
-							50 -	yr R	ainfall	=6.75	••	
						R	unò	ff Á	rea=0.′	140 a	c	
					l i	Run	off	Volu	ıme=0.	042 z	f	
Įs)					-							
Flow (cfs)						l	Rui		Depth	I I		
Flo									Tc=6	.0 mi	n	
-						1				CN=7	5	
						I I				 		
-			1 I 1 I 1 I			I I						
0-	//////////////////////////////////////	<u></u>										
5	6	7 8	9 10	11 12 Time	13 • (hours)	14	15	16	17 18	19	20	

Summary for Pond 9P: UG-1

Inflow Area = 0.190 ac, 94.74% Impervious, Inflow Depth > 5.80" for 50-yr event Inflow 1.76 cfs @ 11.96 hrs, Volume= 0.092 af = 1.35 cfs @ 12.03 hrs, Volume= Outflow = 0.070 af, Atten= 23%, Lag= 4.2 min 1.35 cfs @ 12.03 hrs, Volume= 0.070 af Primary = Routed to Link 7L : PDA-1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 722.86' @ 12.03 hrs Surf.Area= 512 sf Storage= 1,538 cf

Plug-Flow detention time= 106.0 min calculated for 0.070 af (76% of inflow) Center-of-Mass det. time= 47.2 min (780.1 - 732.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	719.00'	102 cf	8.00'W x 64.00'L x 4.67'H Field A
			2,389 cf Overall - 2,133 cf Embedded = 256 cf x 40.0% Voids
#2A	719.50'	1,496 cf	retain_it retain_it 3.5' x 8 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			1 Rows adjusted for 110.5 cf perimeter wall
		1 598 cf	Total Available Storage

1,598 CT I Otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	718.25'	12.0" Round Culvert
	-		L= 122.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 718.25' / 715.85' S= 0.0197 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	722.75'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	721.45'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	719.00'	0.520 in/hr Exfiltration over Surface area
	-		Conductivity to Groundwater Elevation = 715.00'

Primary OutFlow Max=1.30 cfs @ 12.03 hrs HW=722.84' (Free Discharge)

-**1=Culvert** (Passes 1.28 cfs of 6.04 cfs potential flow)

2=Orifice/Grate (Weir Controls 0.27 cfs @ 0.98 fps)

-3=Orifice/Grate (Orifice Controls 1.01 cfs @ 5.14 fps)

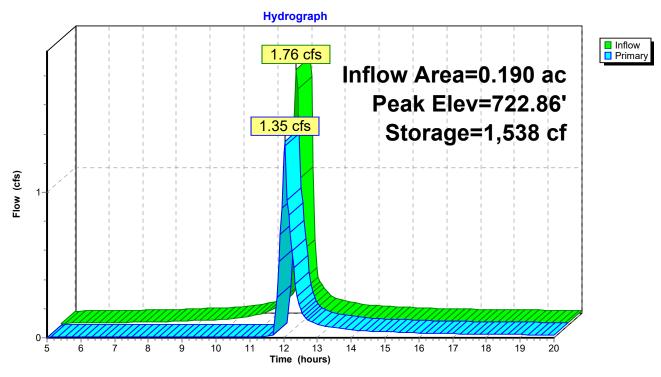
-4=Exfiltration (Controls 0.01 cfs)

Pond 9P: UG-1 - Chamber Wizard Field A

Chamber Model = retain_it retain_it 3.5' (retain-it®)

Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf 1 Rows adjusted for 110.5 cf perimeter wall

8 Chambers/Row x 8.00' Long = 64.00' Row Length 1 Rows x 96.0" Wide = 8.00' Base Width 6.0" Stone Base + 50.0" Chamber Height = 4.67' Field Height


6.1 cf Sidewall x 8 x 2 + 6.1 cf Endwall x 1 x 2 = 110.5 cf Perimeter Wall 8 Chambers x 200.8 cf - 110.5 cf Perimeter wall = 1,495.7 cf Chamber Storage 8 Chambers x 266.7 cf = 2,133.3 cf Displacement

2,389.3 cf Field - 2,133.3 cf Chambers = 256.0 cf Stone x 40.0% Voids = 102.4 cf Stone Storage

Chamber Storage + Stone Storage = 1,598.1 cf = 0.037 afOverall Storage Efficiency = 66.9%Overall System Size = $64.00' \times 8.00' \times 4.67'$

8 Chambers 88.5 cy Field 9.5 cy Stone

Pond 9P: UG-1

Stormwater Analysis (Rev)Type IIPrepared by Solli Engineering - Norwood, MAHydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions LLC

Type II 24-hr 50-yr Rainfall=6.75" Printed 2/8/2024 Page 57

Stage-Discharge for Pond 9P: UG-1

Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)
719.00	0.00	721.65	0.12
719.05	0.01	721.70	0.18 0.24
719.10 719.15	0.01 0.01	721.75 721.80	0.24 0.31
719.10	0.01	721.85	0.37
719.25	0.01	721.90	0.44
719.30	0.01	721.95	0.48
719.35	0.01	722.00	0.53
719.40 719.45	0.01 0.01	722.05 722.10	0.57 0.61
719.45	0.01	722.10	0.65
719.55	0.01	722.20	0.68
719.60	0.01	722.25	0.71
719.65	0.01	722.30	0.74
719.70 719.75	0.01 0.01	722.35 722.40	0.77 0.80
719.80	0.01	722.40	0.83
719.85	0.01	722.50	0.86
719.90	0.01	722.55	0.88
719.95	0.01	722.60	0.91
720.00 720.05	0.01 0.01	722.65 722.70	0.93 0.96
720.10	0.01	722.75	0.98
720.15	0.01	722.80	1.12
720.20	0.01	722.85	1.35
720.25 720.30	0.01 0.01	722.90 722.95	1.64 1.99
720.35	0.01	723.00	2.37
720.40	0.01	723.05	2.80
720.45	0.01	723.10	3.26
720.50	0.01	723.15	3.54
720.55 720.60	0.01 0.01	723.20 723.25	3.71 3.86
720.65	0.01	723.30	4.01
720.70	0.01	723.35	4.16
720.75	0.01	723.40	4.29
720.80 720.85	0.01 0.01	723.45 723.50	4.43 4.56
720.85	0.01	723.55	4.50
720.95	0.01	723.60	4.80
721.00	0.01	723.65	4.92
721.05	0.01		
721.10 721.15	0.01 0.01		
721.10	0.01		
721.25	0.01		
721.30	0.01		
721.35 721.40	0.01 0.01		
721.40	0.01		
721.50	0.02		
721.55	0.04		
721.60	0.08		
		•	

Stormwater Analysis (Rev)

	rage
(feet) (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-	
	,021
719.05 512 10 721.70 512 1	,043
719.10 512 20 721.75 512 1	,064
719.15 512 31 721.80 512 1	,085
719.20 512 41 721.85 512 1	,107
	,128
	,149
	,171
	,192
	,214
	,235
	,256
	,278
	,299
	,320
	,342
	,363
	,384
	,406
	,400 ,427
	,427 ,449
	,470
	,491
	,513
	,534
	,555
	,577
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
	,598
721.05 512 765	
721.10 512 786	
721.15 512 808	
721.20 512 829	
721.25 512 850	
721.30 512 872	
721.35 512 893	
721.40 512 914	
721.45 512 936	
721.50 512 957	

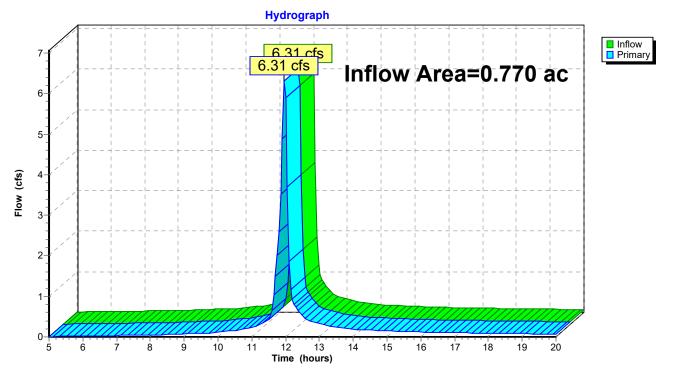
512

512

978

1,000

721.55


721.60

Stage-Area-Storage for Pond 9P: UG-1

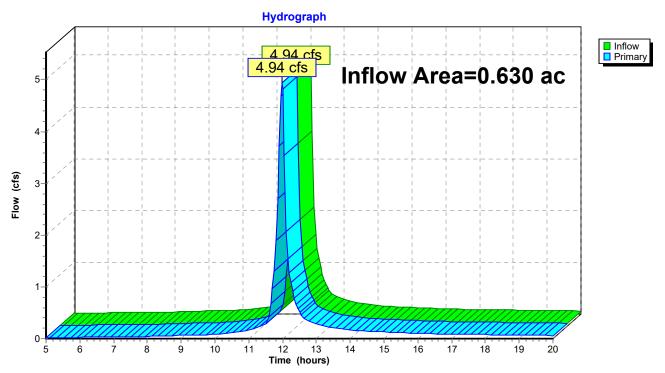
Summary for Link 3L: EDA

Inflow Area	a =	0.770 ac, 58.44% Impervious, Inflow Depth > 4.73" for 50-yr event	
Inflow	=	6.31 cfs @ 11.97 hrs, Volume= 0.303 af	
Primary	=	6.31 cfs @ 11.97 hrs, Volume= 0.303 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 3L: EDA

Summary for Link 7L: PDA-1

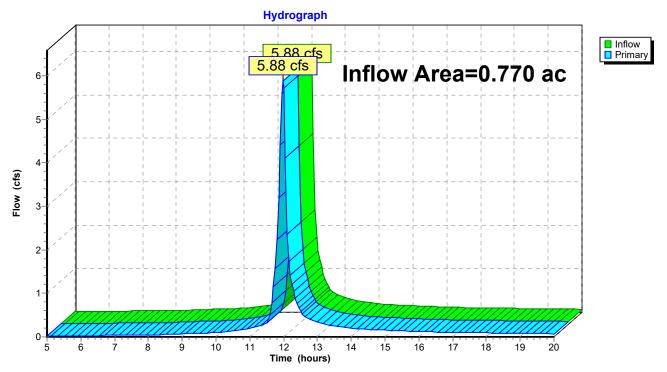

 Inflow Area =
 0.630 ac, 77.78% Impervious, Inflow Depth > 4.91" for 50-yr event

 Inflow =
 4.94 cfs @
 11.98 hrs, Volume=
 0.258 af

 Primary =
 4.94 cfs @
 11.98 hrs, Volume=
 0.258 af, Atten= 0%, Lag= 0.0 min

 Routed to Link 8L : PDA
 DA
 DA
 0.258 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



Summary for Link 8L: PDA

Inflow Area	a =	0.770 ac, 67.53% Impervious, Inflow Depth > 4.68" for 50-yr event	
Inflow	=	5.88 cfs @ 11.98 hrs, Volume= 0.300 af	
Primary	=	5.88 cfs $\overline{@}$ 11.98 hrs, Volume= 0.300 af, Atten= 0%, Lag= 0.0 m	nin

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 8L: PDA

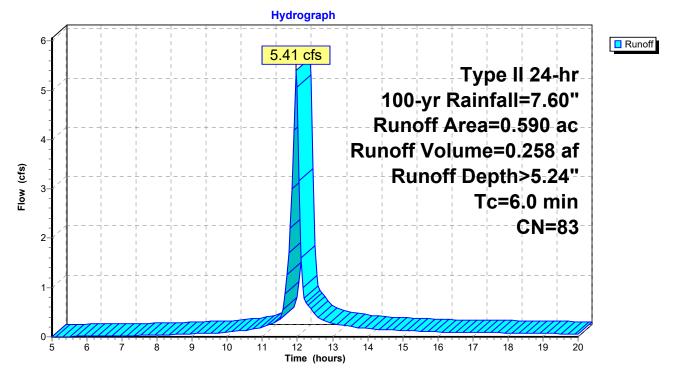
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EDA-1	Runoff Area=0.590 ac 50.85% Impervious Runoff Depth>5.24" Tc=6.0 min CN=83 Runoff=5.41 cfs 0.258 af
Subcatchment2S: EDA-2	Runoff Area=0.180 ac 83.33% Impervious Runoff Depth>6.31" Tc=6.0 min CN=93 Runoff=1.85 cfs 0.095 af
Subcatchment4S: PDA-1A	Runoff Area=0.440 ac 70.45% Impervious Runoff Depth>5.90" Tc=6.0 min CN=89 Runoff=4.36 cfs 0.216 af
Subcatchment5S: PDA-1B	Runoff Area=0.190 ac 94.74% Impervious Runoff Depth>6.57" Tc=6.0 min CN=96 Runoff=1.99 cfs 0.104 af
Subcatchment6S: PDA-2	Runoff Area=0.140 ac 21.43% Impervious Runoff Depth>4.35" Tc=6.0 min CN=75 Runoff=1.11 cfs 0.051 af
Pond 9P: UG-1	Peak Elev=722.95' Storage=1,577 cf Inflow=1.99 cfs 0.104 af Outflow=1.99 cfs 0.082 af
Link 3L: EDA	Inflow=7.26 cfs 0.352 af Primary=7.26 cfs 0.352 af
Link 7L: PDA-1	Inflow=6.13 cfs 0.298 af Primary=6.13 cfs 0.298 af
Link 8L: PDA	Inflow=7.23 cfs 0.349 af Primary=7.23 cfs 0.349 af

Total Runoff Area = 1.540 ac Runoff Volume = 0.723 af Average Runoff Depth = 5.64" 37.01% Pervious = 0.570 ac 62.99% Impervious = 0.970 ac

Summary for Subcatchment 1S: EDA-1

Runoff = 5.41 cfs @ 11.97 hrs, Volume= 0.258 af, Depth> 5.24" Routed to Link 3L : EDA


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.60"

Area	a (ac)	CN	Desc	Description						
(0.300	98	Pave	aved parking, HSG A						
(0.060	60	Woo	ds, Fair, H	ISG B					
().230	69	50-7	5% Grass	cover, Fair	HSG B				
(0.590 83 Weighted Average									
0.290 49.15% Pervious Area										
0.300 50.85% Impervious Area										
Tc	Leng	jth	Slope	Velocity	Capacity	Description				
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
6.0						Direct Entry				

Direct Entry,

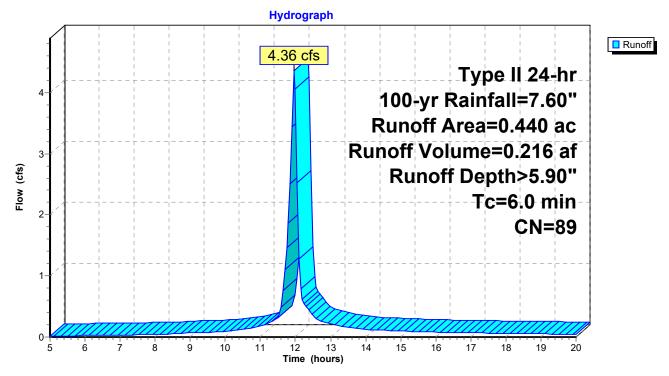
Subcatchment 1S: EDA-1

Summary for Subcatchment 2S: EDA-2

Runoff = 1.85 cfs @ 11.96 hrs, Volume= 0.095 af, Depth> 6.31" Routed to Link 3L : EDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.60"

Area	(ac)	CN Des	cription							
	.150		ed parking							
-	.030			cover, Fair	, HSG E	3				
	0.180 93 Weighted Average 0.030 16.67% Pervious Area									
	.150		3% Imper							
· ·			• / •							
Тс	Length		Velocity	Capacity	Descri	ption				
<u>(min)</u>	(feet) (ft/ft)	(ft/sec)	(cfs)						
6.0					Direct	Entry,				
				Subcatc	hment	2S: ED/	Δ-2			
				Hydrog		20. 20/				
		1	1 1	Hydrog	Ларн		1 1	1 1	1	_
2-			+ 	1.85 (+	- + 	+ 		Runoff
				1.05 (Гуре II	24 h	r
-			 		i i		1			
-						100	-yr Ra	ainfall=	=7.60'	•
						Rune	off Ar	ea=0.1	80 ac	
					i i	Runoff	Volu	me=0	095 a	F
· fs)					-					
Flow (cfs) −1	, , , , , , , , , , , , , , , , , , ,		i	-i+	i-			Depth>		
Flov								Tc=6.	0 mir	1
-								0	CN=93	3
-			I I I I I I							
-						i i				
			I I			I				
-			I I I I		VITT		1	- I I	1	
-										
		7 8	9 10	11 12 Time	13 (hours)	14 15	16	17 18	19	20

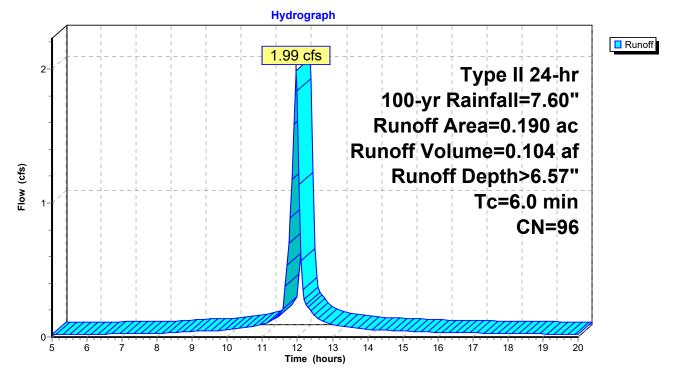

Summary for Subcatchment 4S: PDA-1A

Runoff = 4.36 cfs @ 11.96 hrs, Volume= Routed to Link 7L : PDA-1 0.216 af, Depth> 5.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.60"

Ar	ea (ac)	CN	Desc	Description						
	0.310	98	Pave	d parking	HSG A					
	0.130	69	50-7	5% Grass	cover, Fair	, HSG B				
	0.440 89 W			hted Aver	age					
	0.130			29.55% Pervious Area						
	0.310		70.4	5% Imperv						
٦	c Leng	gth	Slope	Velocity	Capacity	Description				
(mi	ו) (fe	et)	(ft/ft)	(ft/sec)	(cfs)					
6	.0					Direct Entry,				
						•				

Subcatchment 4S: PDA-1A

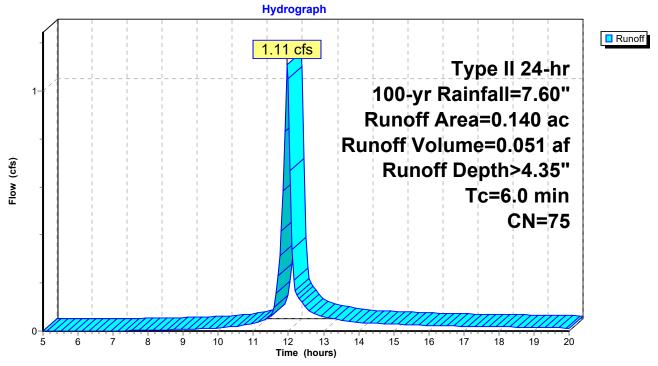

Summary for Subcatchment 5S: PDA-1B

Runoff = 1.99 cfs @ 11.96 hrs, Volume= Routed to Pond 9P : UG-1 0.104 af, Depth> 6.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.60"

Are	ea (ac)	CN	Desc	Description							
	0.180	98	Pave	d parking	, HSG A						
	0.010	69	50-7	5% Grass	cover, Fair	, HSG B					
	0.190 96 Weighted Average										
	0.010 5.26% Pervious Area										
	0.180			4% Imper∖	∕ious Area						
-			~		.						
	c Leng	•	Slope	Velocity	Capacity	Description					
(mir	ı) (fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.	0					Direct Entry,					

Subcatchment 5S: PDA-1B



Summary for Subcatchment 6S: PDA-2

Runoff = 1.11 cfs @ 11.97 hrs, Volume= 0.051 af, Depth> 4.35" Routed to Link 8L : PDA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.60"

Area (ac)	CN	Description						
0.030	98	B Paved parking, HSG A						
0.110	69	50-7	5% Grass	cover, Fair	r, HSG B			
0.140	75	Weig	ghted Aver	age				
0.110		78.5	7% Pervio	us Area				
0.030		21.4	3% Imper\	ious Area/				
Tc Len (min) (fe	gth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			
	Subcatchment 6S: PDA-2							

Summary for Pond 9P: UG-1

 Inflow Area =
 0.190 ac, 94.74% Impervious, Inflow Depth > 6.57" for 100-yr event

 Inflow =
 1.99 cfs @
 11.96 hrs, Volume=
 0.104 af

 Outflow =
 1.99 cfs @
 12.01 hrs, Volume=
 0.082 af, Atten= 0%, Lag= 2.6 min

 Primary =
 1.99 cfs @
 12.01 hrs, Volume=
 0.082 af

 Routed to Link 7L : PDA-1
 0.082 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 722.95' @ 12.01 hrs Surf.Area= 512 sf Storage= 1,577 cf

Plug-Flow detention time= 101.3 min calculated for 0.082 af (79% of inflow) Center-of-Mass det. time= 45.8 min (777.7 - 731.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	719.00'	102 cf	8.00'W x 64.00'L x 4.67'H Field A
			2,389 cf Overall - 2,133 cf Embedded = 256 cf x 40.0% Voids
#2A	719.50'	1,496 cf	retain_it retain_it 3.5' x 8 Inside #1
			Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf
			Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf
			1 Rows adjusted for 110.5 cf perimeter wall
		1 598 cf	Total Available Storage

1,598 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	718.25'	12.0" Round Culvert
	-		L= 122.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 718.25' / 715.85' S= 0.0197 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	722.75'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	721.45'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	719.00'	0.520 in/hr Exfiltration over Surface area
	-		Conductivity to Groundwater Elevation = 715.00'

Primary OutFlow Max=1.90 cfs @ 12.01 hrs HW=722.94' (Free Discharge)

1=Culvert (Passes 1.89 cfs of 6.11 cfs potential flow)

2=Orifice/Grate (Weir Controls 0.84 cfs @ 1.42 fps)

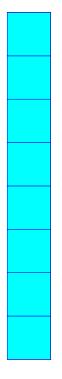
-3=Orifice/Grate (Orifice Controls 1.05 cfs @ 5.36 fps)

-4=Exfiltration (Controls 0.01 cfs)

Pond 9P: UG-1 - Chamber Wizard Field A

Chamber Model = retain_it retain_it 3.5' (retain-it®)

Inside= 84.0"W x 42.0"H => 25.10 sf x 8.00'L = 200.8 cf Outside= 96.0"W x 50.0"H => 33.33 sf x 8.00'L = 266.7 cf 1 Rows adjusted for 110.5 cf perimeter wall


8 Chambers/Row x 8.00' Long = 64.00' Row Length 1 Rows x 96.0" Wide = 8.00' Base Width 6.0" Stone Base + 50.0" Chamber Height = 4.67' Field Height

6.1 cf Sidewall x 8 x 2 + 6.1 cf Endwall x 1 x 2 = 110.5 cf Perimeter Wall 8 Chambers x 200.8 cf - 110.5 cf Perimeter wall = 1,495.7 cf Chamber Storage 8 Chambers x 266.7 cf = 2,133.3 cf Displacement

2,389.3 cf Field - 2,133.3 cf Chambers = 256.0 cf Stone x 40.0% Voids = 102.4 cf Stone Storage

Chamber Storage + Stone Storage = 1,598.1 cf = 0.037 afOverall Storage Efficiency = 66.9%Overall System Size = $64.00' \times 8.00' \times 4.67'$

8 Chambers 88.5 cy Field 9.5 cy Stone

Hydrograph Inflow
Primary 1 99 cfs 1.99 cfs Inflow Area=0.190 ac 2 Peak Elev=722.95' Storage=1,577 cf Flow (cfs) 1 0-6 7 8 9 10 11 14 15 16 17 18 19 20 5 12 13 Time (hours)

Pond 9P: UG-1

Stormwater Analysis (Rev)Type II 2Prepared by Solli Engineering - Norwood, MAHydroCAD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions LLC

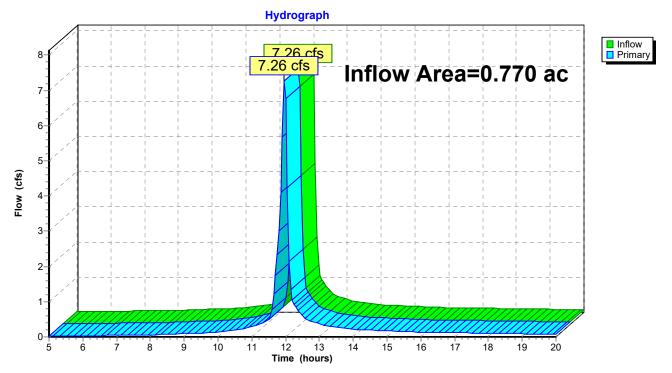
Type II 24-hr 100-yr Rainfall=7.60" Printed 2/8/2024 Page 71

Stage-Discharge for Pond 9P: UG-1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Primary	Elevation	Primary
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.10 0.01 721.75 0.24 719.15 0.01 721.80 0.31 719.25 0.01 721.85 0.37 719.25 0.01 721.90 0.44 719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.65 0.01 722.25 0.71 719.55 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.40 0.80 719.85 0.01 722.40 0.80 719.85 0.01 722.55 0.88 719.95 0.01 722.65 0.93 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.45 0.01 723.30 4.01 720.55 0.01 723.30 4.01 720.65 0.01 723.30 4.61 720.40 0.01 723.55 4.68 <td></td> <td></td> <td></td> <td></td>				
719.15 0.01 721.80 0.31 719.25 0.01 721.90 0.44 719.35 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.00 0.53 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.65 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.75 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.95 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.86 719.90 0.01 722.50 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.40 0.01 723.05 2.80 720.50 0.01 723.10 3.26 720.40 0.01 723.30 4.01 720.50 0.01 723.40 4.29 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.25 0.01 721.90 0.44 719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.05 0.57 719.45 0.01 722.10 0.61 719.55 0.01 722.10 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.20 0.68 719.65 0.01 722.30 0.74 719.75 0.01 722.40 0.80 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.95 0.01 722.45 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.70 0.96 720.10 0.01 722.70 0.96 720.15 0.01 722.85 1.35 720.25 0.01 722.85 1.35 720.25 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.45 0.01 723.20 3.71 720.60 0.01 723.35 4.16 720.75 0.01 723.35 4.66 720.75 0.01 723.35 4.66 720.75 0.01 723.45 4.43 720.85 0.01 723.65 4.80 <td></td> <td></td> <td></td> <td></td>				
719.30 0.01 721.95 0.48 719.35 0.01 722.00 0.53 719.40 0.01 722.00 0.57 719.45 0.01 722.10 0.61 719.50 0.01 722.20 0.68 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.85 0.01 722.40 0.80 719.85 0.01 722.45 0.83 719.85 0.01 722.45 0.83 719.85 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.60 0.91 720.05 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.45 0.01 723.10 3.26 720.45 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.45 4.43 720.85 0.01 723.45 4.43 720.85 0.01 723.45 4.68 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
719.45 0.01 722.10 0.61 719.50 0.01 722.15 0.65 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.80 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.75 0.01 723.30 4.01 720.80 0.01 723.40 4.29 720.80 0.01 723.45 4.43 720.85 0.01 723.65 4.92 720.80 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.50 0.01 722.15 0.65 719.55 0.01 722.20 0.68 719.60 0.01 722.25 0.71 719.65 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.85 1.35 720.25 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.30 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.55 0.01 722.20 0.68 719.60 0.01 722.30 0.74 719.65 0.01 722.30 0.74 719.75 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.20 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.20 0.01 722.95 1.99 720.35 0.01 722.95 1.99 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.80 0.01 723.55 4.68 720.95 0.01 723.55 4.68 720.75 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td>-</td> <td></td>			-	
719.60 0.01 722.25 0.71 719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.25 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.75 0.01 723.35 4.68 720.95 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.65 0.01 722.30 0.74 719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.55 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.35 4.68 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.70 0.01 722.35 0.77 719.75 0.01 722.40 0.80 719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.45 0.01 723.05 2.80 720.55 0.01 723.30 4.01 720.60 0.01 723.35 4.16 720.75 0.01 723.35 4.16 720.80 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.80 0.01 722.45 0.83 719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.80 1.12 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 2.37 720.40 0.01 723.00 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.85 0.01 722.50 0.86 719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.65 0.01 723.30 4.01 720.65 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.90 0.01 722.55 0.88 719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.50 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.50 4.56 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.30 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 <td></td> <td></td> <td></td> <td></td>				
719.95 0.01 722.60 0.91 720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.70 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.90 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.02 0.02				
720.00 0.01 722.65 0.93 720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.30 4.01 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.01 723.65				
720.05 0.01 722.70 0.96 720.10 0.01 722.75 0.98 720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.30 4.01 720.75 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.45 0.01 723.65 4.92 721.50 0.02 0.01 723.65				
720.15 0.01 722.80 1.12 720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.50 0.02				
720.20 0.01 722.85 1.35 720.25 0.01 722.90 1.64 720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.50 4.56 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.45 0.01 721.50 0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
720.30 0.01 722.95 1.99 720.35 0.01 723.00 2.37 720.40 0.01 723.05 2.80 720.45 0.01 723.10 3.26 720.50 0.01 723.15 3.54 720.55 0.01 723.20 3.71 720.60 0.01 723.25 3.86 720.65 0.01 723.30 4.01 720.70 0.01 723.35 4.16 720.75 0.01 723.40 4.29 720.80 0.01 723.45 4.43 720.85 0.01 723.55 4.68 720.90 0.01 723.55 4.68 720.95 0.01 723.65 4.92 721.00 0.01 723.65 4.92 721.15 0.01 723.65 4.92 721.20 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.40 0.01 723.65 4.92 721.50 0.02 0.02 0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720.75	0.01		4.29
720.90 0.01 723.55 4.68 720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 723.65 4.92 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 0.02 0.01				
720.95 0.01 723.60 4.80 721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.45 0.01 721.35 0.01 721.35 0.01 721.45 0.01 721.45 0.01 721.50 0.02				
721.00 0.01 723.65 4.92 721.05 0.01 723.65 4.92 721.10 0.01 721.15 0.01 721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02 0.02 0.01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			120.00	
721.20 0.01 721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.25 0.01 721.30 0.01 721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.300.01721.350.01721.400.01721.450.01721.500.02				
721.35 0.01 721.40 0.01 721.45 0.01 721.50 0.02				
721.40 0.01 721.45 0.01 721.50 0.02				
721.50 0.02				
721.55 0.04 721.60 0.08				
121.00 0.00	121.00	0.00		

Stormwater Analysis (Rev)

••••		• •
Prepa	red by Solli Engineering - Norwood, MA	
HydroC	AD® 10.10-6a s/n 10622 © 2020 HydroCAD Software Solutions	LLC


Stage-Area-Storage for Pond 9P: UG-1

	- <i>i</i>	e /	· -· /·	. .	e /
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
719.00 719.05	512 512	0 10	721.65 721.70	512 512	1,021 1,043
719.00	512	20	721.70	512	1,043
719.15	512	31	721.80	512	1,085
719.20	512	41	721.85	512	1,107
719.25	512	51	721.90	512	1,128
719.30	512	61	721.95	512	1,149
719.35	512	72	722.00	512	1,171
719.40	512	82	722.05	512	1,192
719.45	512	92	722.10	512	1,214
719.50	512	102	722.15	512	1,235
719.55	512	124	722.20	512	1,256
719.60	512	145	722.25	512	1,278
719.65	512	167	722.30	512	1,299
719.70	512	188	722.35	512	1,320
719.75	512 512	209 231	722.40	512 512	1,342
719.80 719.85	512	251	722.45 722.50	512	1,363 1,384
719.90	512	273	722.55	512	1,406
719.95	512	295	722.60	512	1,400
720.00	512	316	722.65	512	1,449
720.05	512	337	722.70	512	1,470
720.10	512	359	722.75	512	1,491
720.15	512	380	722.80	512	1,513
720.20	512	402	722.85	512	1,534
720.25	512	423	722.90	512	1,555
720.30	512	444	722.95	512	1,577
720.35	512	466	723.00	512	1,598
720.40	512	487	723.05	512	1,598
720.45	512	508 520	723.10	512	1,598
720.50 720.55	512 512	530 551	723.15 723.20	512 512	1,598 1,598
720.55	512	572	723.25	512	1,598
720.65	512	594	723.30	512	1,598
720.70	512	615	723.35	512	1,598
720.75	512	637	723.40	512	1,598
720.80	512	658	723.45	512	1,598
720.85	512	679	723.50	512	1,598
720.90	512	701	723.55	512	1,598
720.95	512	722	723.60	512	1,598
721.00	512	743	723.65	512	1,598
721.05	512	765			
721.10	512	786			
721.15 721.20	512 512	808 829			
721.20	512	850			
721.30	512	872			
721.35	512	893			
721.40	512	914			
721.45	512	936			
721.50	512	957			
721.55	512	978			
721.60	512	1,000			
			l		

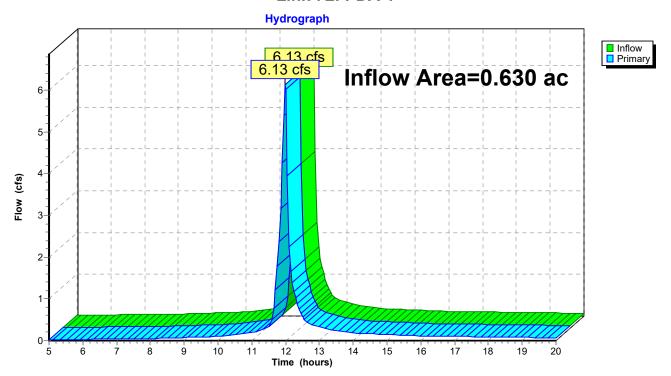
Summary for Link 3L: EDA

Inflow Area =	0.770 ac, 58	8.44% Impervious, II	nflow Depth > 5.49"	for 100-yr event
Inflow =	7.26 cfs @ 1	11.96 hrs, Volume=	0.352 af	
Primary =	7.26 cfs @ 1	11.96 hrs, Volume=	0.352 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 3L: EDA

Summary for Link 7L: PDA-1

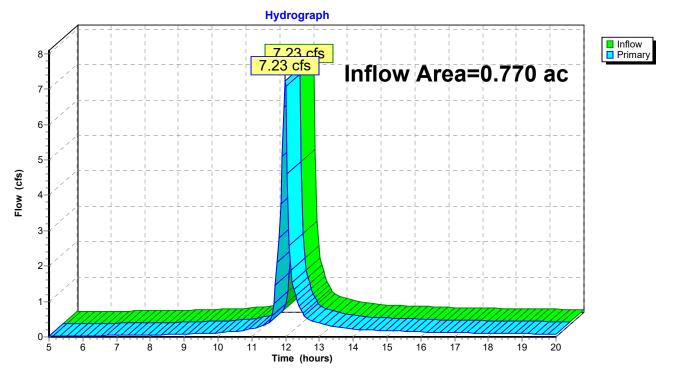

 Inflow Area =
 0.630 ac, 77.78% Impervious, Inflow Depth > 5.68" for 100-yr event

 Inflow =
 6.13 cfs @
 11.99 hrs, Volume=
 0.298 af

 Primary =
 6.13 cfs @
 11.99 hrs, Volume=
 0.298 af, Atten= 0%, Lag= 0.0 min

 Routed to Link 8L : PDA
 0.298 af, Atten= 0%, Lag= 0.0 min
 0.298 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs



Link 7L: PDA-1

Summary for Link 8L: PDA

Inflow Area	a =	0.770 ac, 67.53% Impervious, Inflow Depth > 5.44" for 100-yr event	
Inflow	=	7.23 cfs @ 11.98 hrs, Volume= 0.349 af	
Primary	=	7.23 cfs $\overline{@}$ 11.98 hrs, Volume= 0.349 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 8L: PDA

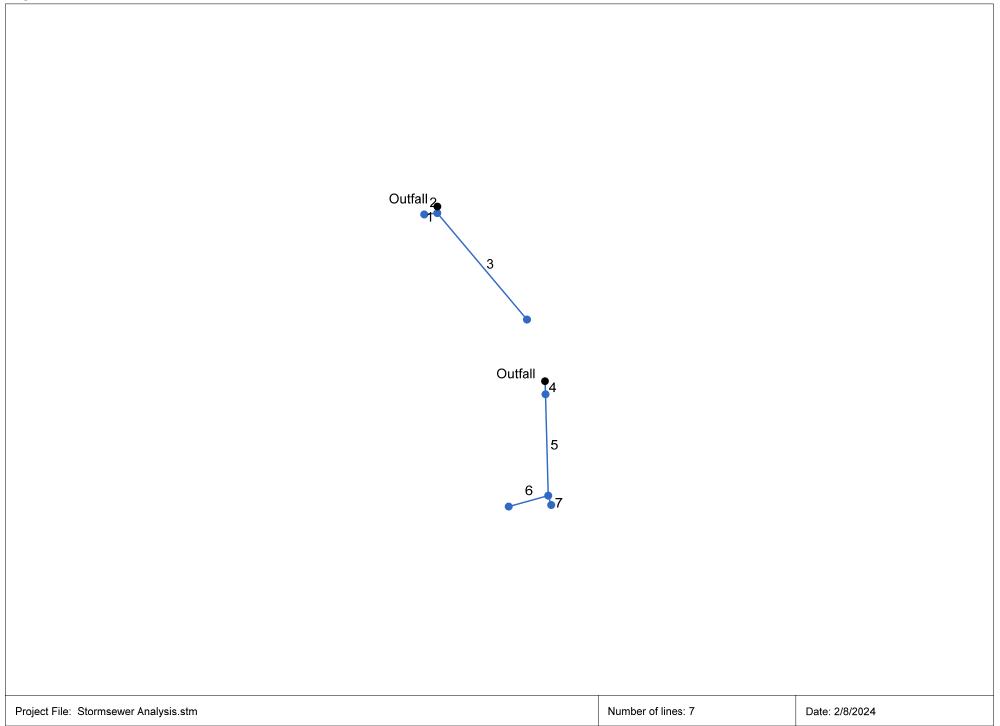
Project	Proposed Coffee S	hop	Ву	OSK	Date	10/03/23
Location	788 Main Street, Ho	lden, MA	Checked	STM	Date	10/03/23
Bold one:	Present	Developed		CE	3DA-1	

1. Runoff Coefficient ©

					_
Soil Name	Cover description			Area	Product
and	(cover type, treatment, and		C ¹	4	of
hydrologic	hydrologic condition;			x acres	C x area
group	percent impervious;			mi ²	
	unconnected/connected impervious				
(Appendix A)	area ratio)				
	Impervious Area	0.95		0.35	0.33
	Landscaped Area	0.35		0.04	0.01
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
1 Use only one C so	ource per line	То	tals =	0.39	0.35
C (weighted) =	total product0.35total area0.39	=	0.89	Use C =	0.89

Project	Proposed Coffee SI	hop	Ву	OSK	Date	10/03/23
Location	788 Main Street, Ho	lden, MA	Checked	STM	Date	10/03/23
Bold one:	Present	Developed		CE	BDA-2	

1. Runoff Coefficient ©


Soil Name	Cover description			Area	Product
and	(cover type, treatment, and		C ¹	-	of
hydrologic	hydrologic condition;			x acres	C x area
group	percent impervious;			mi ²	
	unconnected/connected impervious				
(Appendix A)	area ratio)				
	Impervious Area	0.95		0.07	0.07
	Landscaped Area	0.35		0.00	0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
1 Use only one C so	burce per line	То	tals =	0.07	0.07
C (weighted) =	$\frac{\text{total product}}{\text{total area}} = \frac{0.07}{0.07}$	=	0.95	Use C =	0.95

Project	Proposed Coffee SI	пор	Ву	OSK	Date	10/03/23
Location	788 Main Street, Ho	lden, MA	Checked	STM	Date	10/03/23
Bold one:	Present	Developed		CE	BDA-3	

1. Runoff Coefficient ©

Soil Name	Cover description			Area	Product
and	(cover type, treatment, and		C ¹	-	of
hydrologic	hydrologic condition;			x acres	C x area
group	percent impervious;			mi ²	
	unconnected/connected impervious				
(Appendix A)	area ratio)				
	Impervious Area	0.95		0.05	0.05
	Landscaped Area	0.35		0.00	0.00
					0.00
					0.00
					0.00
					0.00
					0.00
					0.00
1 Use only one C so	burce per line	То	tals =	0.05	0.05
C (weighted) =	$\frac{\text{total product}}{\text{total area}} = \frac{0.05}{0.05}$	=	0.95	Use C =	0.95

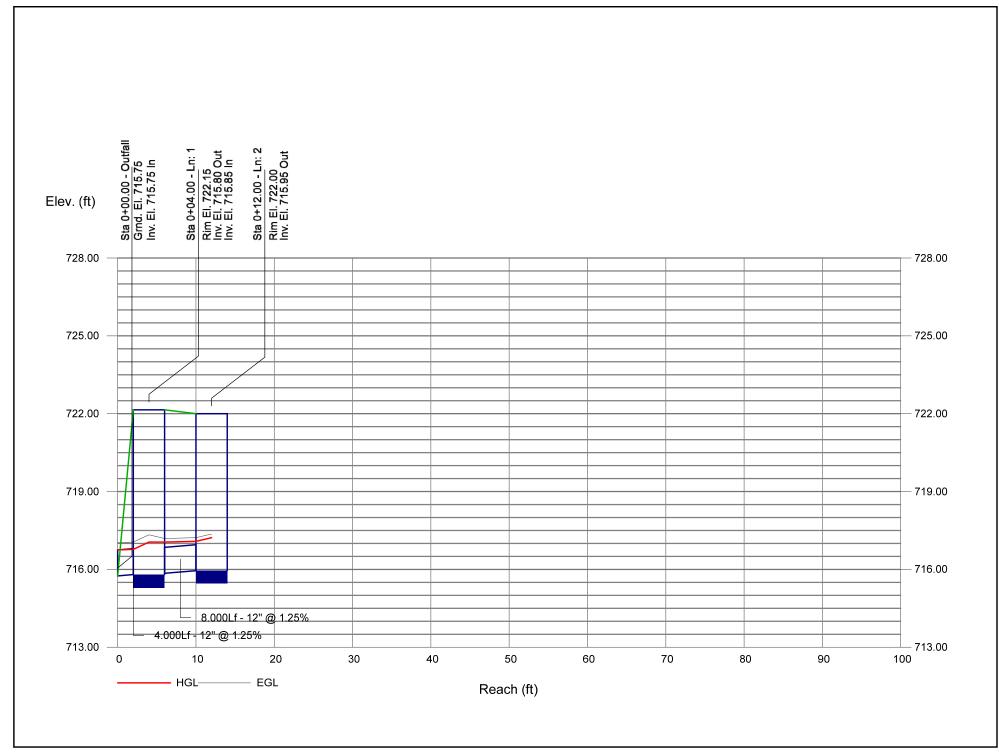
Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

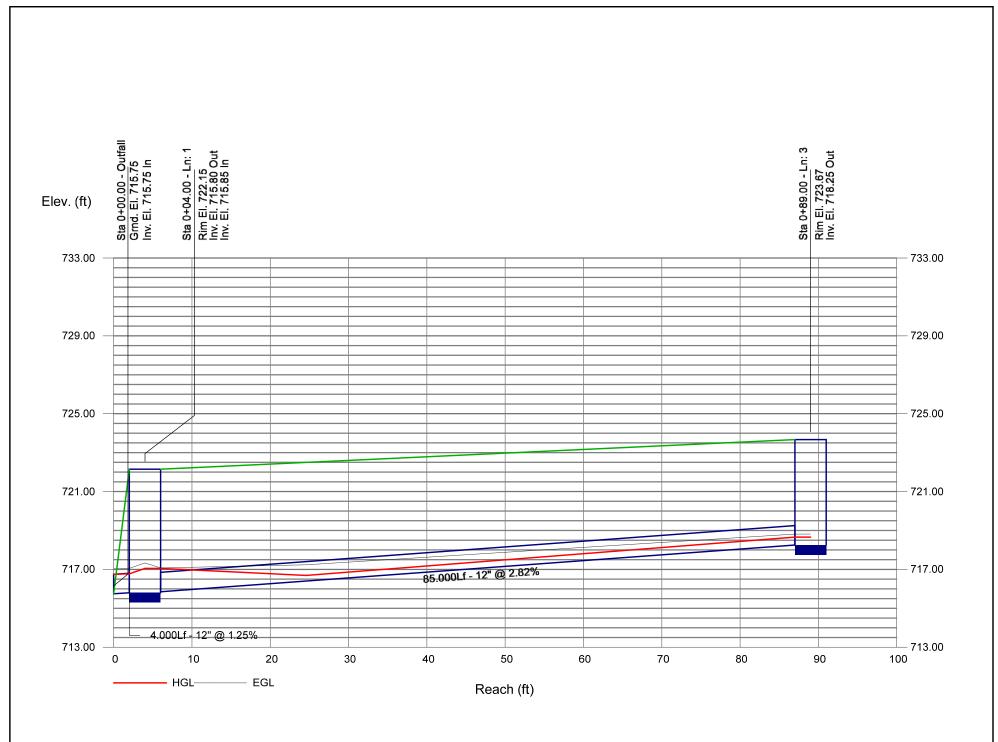
Structure Report

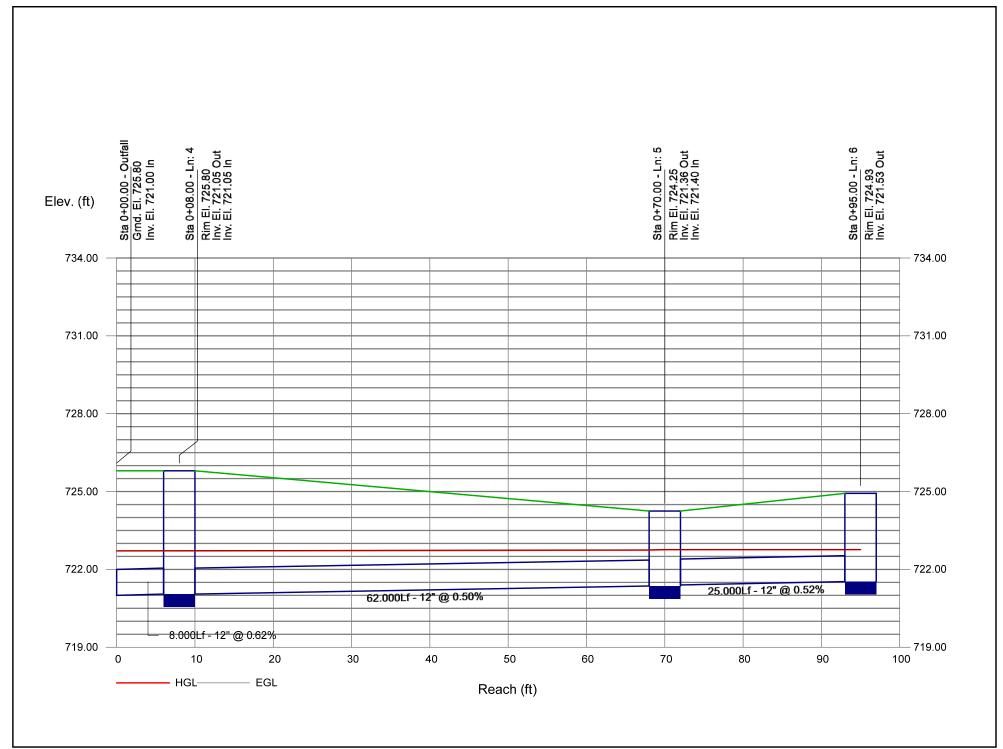
Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Manhole	722.15	Cir	4.00	4.00	12	Cir	715.80	12 12	Cir Cir	715.85 715.85
2		Grate	722.00	Cir	4.00	4.00	12	Cir	715.95			
3		Manhole	723.67	Cir	4.00	4.00	12	Cir	718.25			
4		Manhole	725.80	Cir	4.00	4.00	12	Cir	721.05	12	Cir	721.05
5		Manhole	724.25	Cir	4.00	4.00	12	Cir	721.36	12 12	Cir Cir	721.40 721.40
6		Grate	724.93	Cir	4.00	4.00	12	Cir	721.53			
7		Grate	724.05	Cir	4.00	4.00	12	Cir	721.43			
Project I	File: Stormsewer Analysis.	.stm					N	lumber of Struct	ures: 7	Rur	n Date: 2/8/2024	

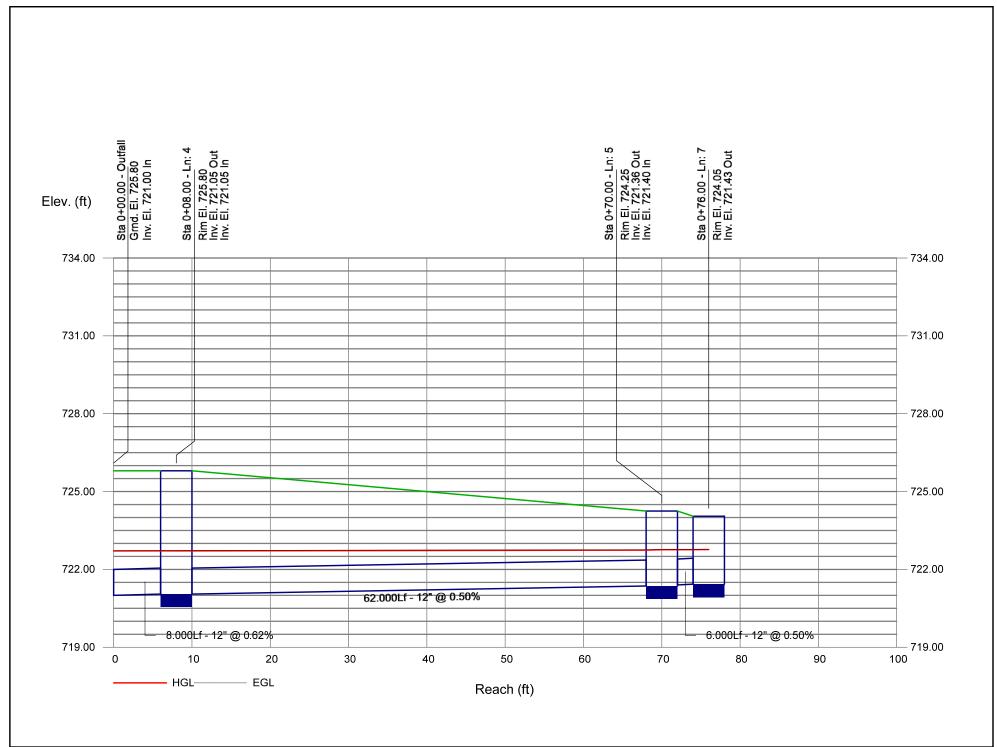
Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		3.31	12	Cir	4.000	715.75	715.80	1.250	716.75	716.77	0.28	717.05	End	Manhole
2		2.36	12	Cir	8.000	715.85	715.95	1.250	717.05*	717.08*	0.14	717.22	1	Grate
3		0.96	12	Cir	85.000	715.85	718.25	2.824	717.05	718.66	n/a	718.66 j	1	Manhole
4		0.76	12	Cir	8.000	721.00	721.05	0.625	722.71*	722.71*	0.00	722.72	End	Manhole
5		0.81	12	Cir	62.000	721.05	721.36	0.500	722.72*	722.74*	0.02	722.76	4	Manhole
6		0.36	12	Cir	25.000	721.40	721.53	0.520	722.76*	722.76*	0.00	722.76	5	Grate
7		0.50	12	Cir	6.000	721.40	721.43	0.499	722.76*	722.76*	0.01	722.77	5	Grate
Project I	File: Stormsewer Analysis.stm								Number o	of lines: 7		Run	Date: 2/8/2	024
NOTES:	Return period = 25 Yrs. ; *Surcha	arged (HGI	above crown). ;j - Line	contains h	ıyd. jump.								


Page 1


tatior	ı	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	im Elev	Line ID
ine			Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 2 3 4 5 5 7	End 4	4.000 8.000 85.000 8.000 62.000 25.000 6.000	0.35 0.00 0.00 0.00 0.05	0.35 0.35 0.00 0.12 0.12 0.05 0.07	0.00 0.89 0.00 0.00 0.00 0.95 0.95	0.00 0.31 0.00 0.00 0.05 0.07	0.31 0.31 0.00 0.11 0.11 0.05 0.07	0.0 6.0 0.0 0.0 6.0 6.0	6.0 6.0 7.9 6.9 6.0 6.0	7.6 7.6 0.0 6.7 7.1 7.6 7.6	3.31 2.36 0.96 0.76 0.81 0.36 0.50	4.31 4.31 6.48 3.05 2.73 2.78 2.73	4.24 3.01 2.19 0.97 1.03 0.46 0.64	12 12 12 12 12 12 12 12	1.25 1.25 2.82 0.62 0.50 0.52 0.50	715.75 715.85 715.85 721.00 721.05 721.40 721.40	715.80 715.95 718.25 721.05 721.36 721.53 721.43	716.75 717.05 717.05 722.71 722.72 722.76 722.76	716.77 717.08 718.66 722.71 722.74 722.76 722.76	715.75 722.15 722.15 725.80 725.80 724.25 724.25	722.15 722.00 723.67 725.80 724.25 724.93 724.05	
				nalysis.st												Numbe	r of lines: 7	,		Run Da	te: 2/8/202	4


Storm Sewer Tabulation


Storm Sewers v2022.00

Page 1

Project: Location: Prepared For:	788 Main St Holden, MA Solli Eng / Sam Malafronte	C NTECH ENGINEERED SOLUTIONS

- **Purpose:** To calculate the water quality flow rate (WQF) over a given site area. In this situation the WQF is derived from the first 1" of runoff from the contributing impervious surface.
- **Reference:** Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual
- **Procedure:** Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form so is preferred. Using the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: cfs/mi²/watershed inches (csm/in).

Compute Q Rate using the following equation:

Q = (qu) (A) (WQV)

where:

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
WQU 1	0.13	0.0001953	5.0	0.083	1.00	795.00	0.16
WQU 2	0.31	0.0004844	5.0	0.083	1.00	795.00	0.39

The WQf sizing calculation selects the minimum size CDS/Cascade/StormCeptor model capable of operating at the computed WQf peak flowrate prior to bypassing. It assumes free discharge of the WQf through the unit and ignores the routing effect of any upstream storm drain piping. As with all hydrodynamic separators, there will be some impact to the Hydraulic Gradient of the corresponding drainage system, and evaluation of this impact should be considered in the design.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 788 MAIN ST** HOLDEN, MA 0.13 ac Unit Site Designation **WQU1** Area Rainfall Station # Weighted C 0.9 71 5 min t_c CDS Model 1515-3 **CDS** Treatment Capacity 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) <u>(in/hr)</u> 0.08 37.6% 37.6% 0.01 0.01 37.6 0.02 0.16 22.6% 60.2% 0.02 22.6 0.24 11.9% 72.1% 0.03 0.03 11.9 0.32 7.6% 79.7% 0.04 0.04 7.6 0.40 4.3% 84.1% 0.05 0.05 4.3 2.3 0.48 2.3% 86.4% 0.05 0.05 0.56 88.2% 0.06 0.06 1.8 1.8% 0.64 1.4% 89.6% 0.07 0.07 1.3 0.72 0.9% 90.4% 0.08 0.08 0.8 0.80 1.2% 91.6% 0.09 0.09 1.1 0.88 1.5% 93.1% 0.10 0.10 1.4 0.9% 0.9 0.96 94.0% 0.11 0.11 1.04 0.4% 94.4% 0.12 0.12 0.4 1.12 0.4% 94.8% 0.13 0.13 0.4 1.20 0.6% 95.4% 0.14 0.14 0.5 1.28 0.3% 95.7% 0.14 0.14 0.3 1.36 0.2% 95.9% 0.15 0.15 0.2 1.44 0.9% 96.7% 0.16 0.16 0.8 1.52 0.6% 97.3% 0.17 0.17 0.5 0.4 1.60 0.4% 97.7% 0.18 0.18 1.80 0.2% 97.9% 0.20 0.20 0.2 98.2 Removal Efficiency Adjustment² = 0.0% Predicted % Annual Rainfall Treated = 98.8% Predicted Net Annual Load Removal Efficiency = 98.2% 1 - Based on 13 years of 15 minute precipitation data for Station 0666, Birch Hill Dam, Worcester County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 788 MAIN ST** HOLDEN, MA 0.31 ac Unit Site Designation **WQU 2** Area 0.9 Rainfall Station # Weighted C 71 5 min t_c CDS Model 1515-3 **CDS** Treatment Capacity 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) <u>(in/hr)</u> 0.08 37.6% 37.6% 0.02 0.02 37.6 0.04 0.04 0.16 22.6% 60.2% 22.5 0.24 11.9% 72.1% 0.07 0.07 11.7 7.6% 0.32 79.7% 0.09 0.09 7.4 0.40 4.3% 84.1% 0.11 0.11 4.2 2.2 0.48 2.3% 86.4% 0.13 0.13 0.56 88.2% 0.16 0.16 1.7 1.8% 0.64 1.4% 89.6% 0.18 0.18 1.3 0.72 0.9% 90.4% 0.20 0.20 0.8 0.80 1.2% 91.6% 0.22 0.22 1.1 0.88 1.5% 93.1% 0.25 0.25 1.3 0.9% 0.27 0.8 0.96 94.0% 0.27 1.04 0.4% 94.4% 0.29 0.29 0.3 1.12 0.4% 94.8% 0.31 0.31 0.4 1.20 0.6% 95.4% 0.33 0.33 0.5 1.28 0.3% 95.7% 0.36 0.36 0.3 1.36 0.2% 95.9% 0.38 0.38 0.1 0.7 1.44 0.9% 96.7% 0.40 0.40 1.52 0.6% 97.3% 0.42 0.42 0.4 0.3 1.60 0.4% 97.7% 0.45 0.45 1.80 0.2% 97.9% 0.50 0.50 0.2 96.4 Removal Efficiency Adjustment² = 0.0% Predicted % Annual Rainfall Treated = 98.8% Predicted Net Annual Load Removal Efficiency = 96.4% 1 - Based on 13 years of 15 minute precipitation data for Station 0666, Birch Hill Dam, Worcester County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

- 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

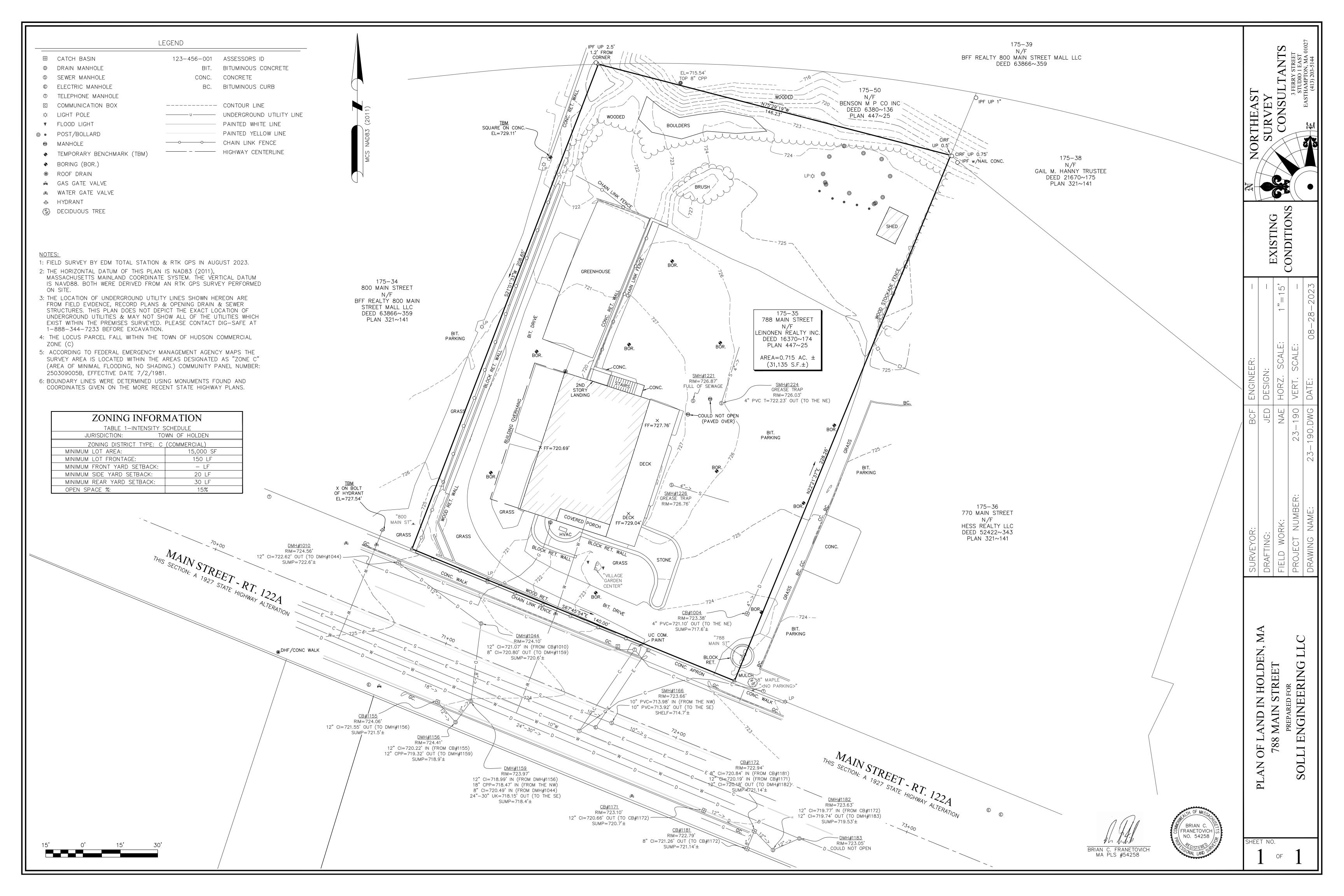
- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
- 5. Total TSS Removal = Sum All Values in Column D

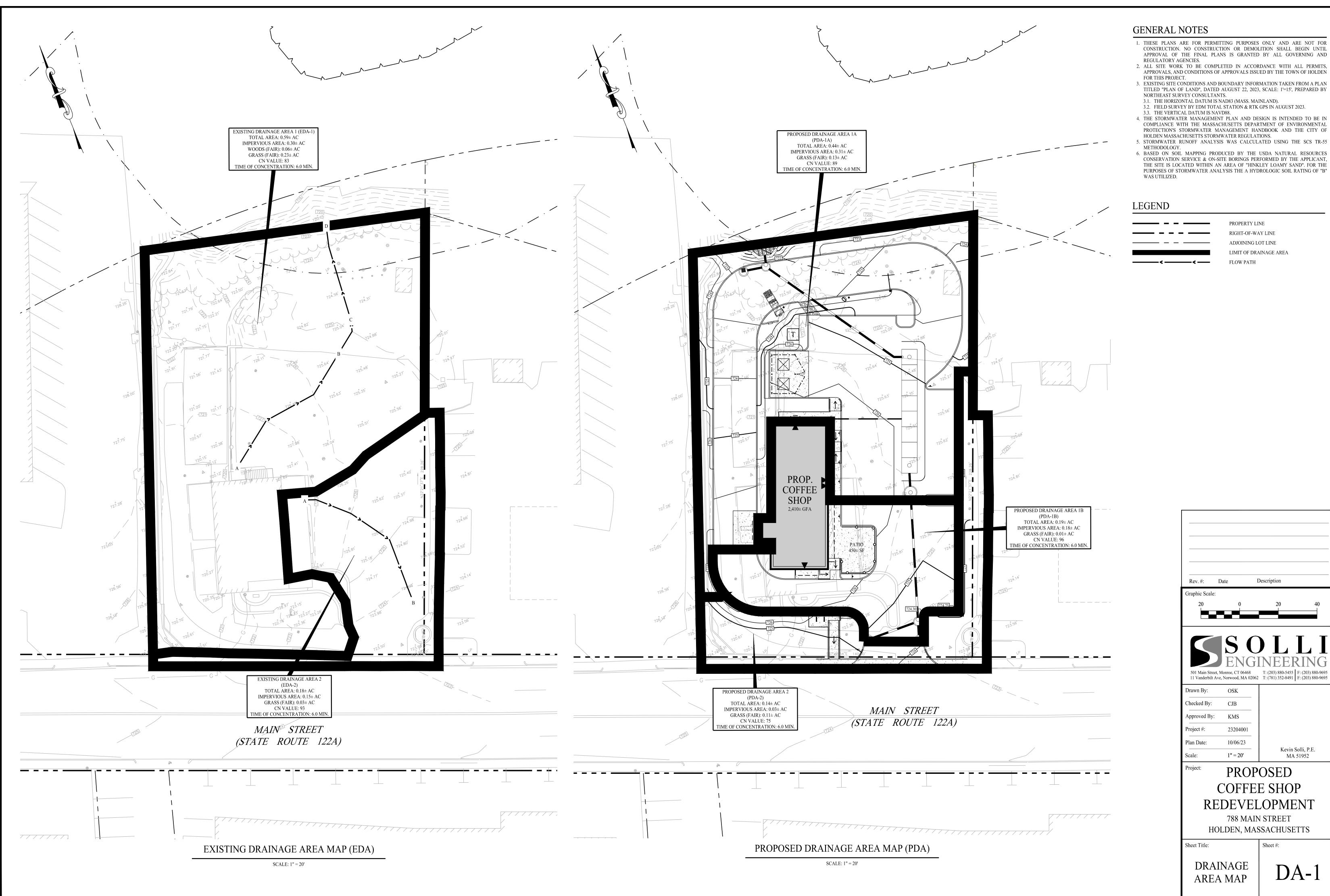
	Location:	788 Main Street, Ho	olden, MA (Train 1)		
	А	В	С	D	E
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
neet	4-Foot Sump with Hooded Outlet	0.25	1.00	0.25	0.75
moval Worksheet	Water Quality Unit	0.90	0.75	0.675	0.075
a b					
TSS Re Calculation					
Calo					
			SS Removal =	92.5%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Prepared By:	Proposed Coffee Shop OSK 10/05/2023		*Equals remaining load from which enters the BMP	n previous BMP (E)

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1 INSTRUCTIONS:

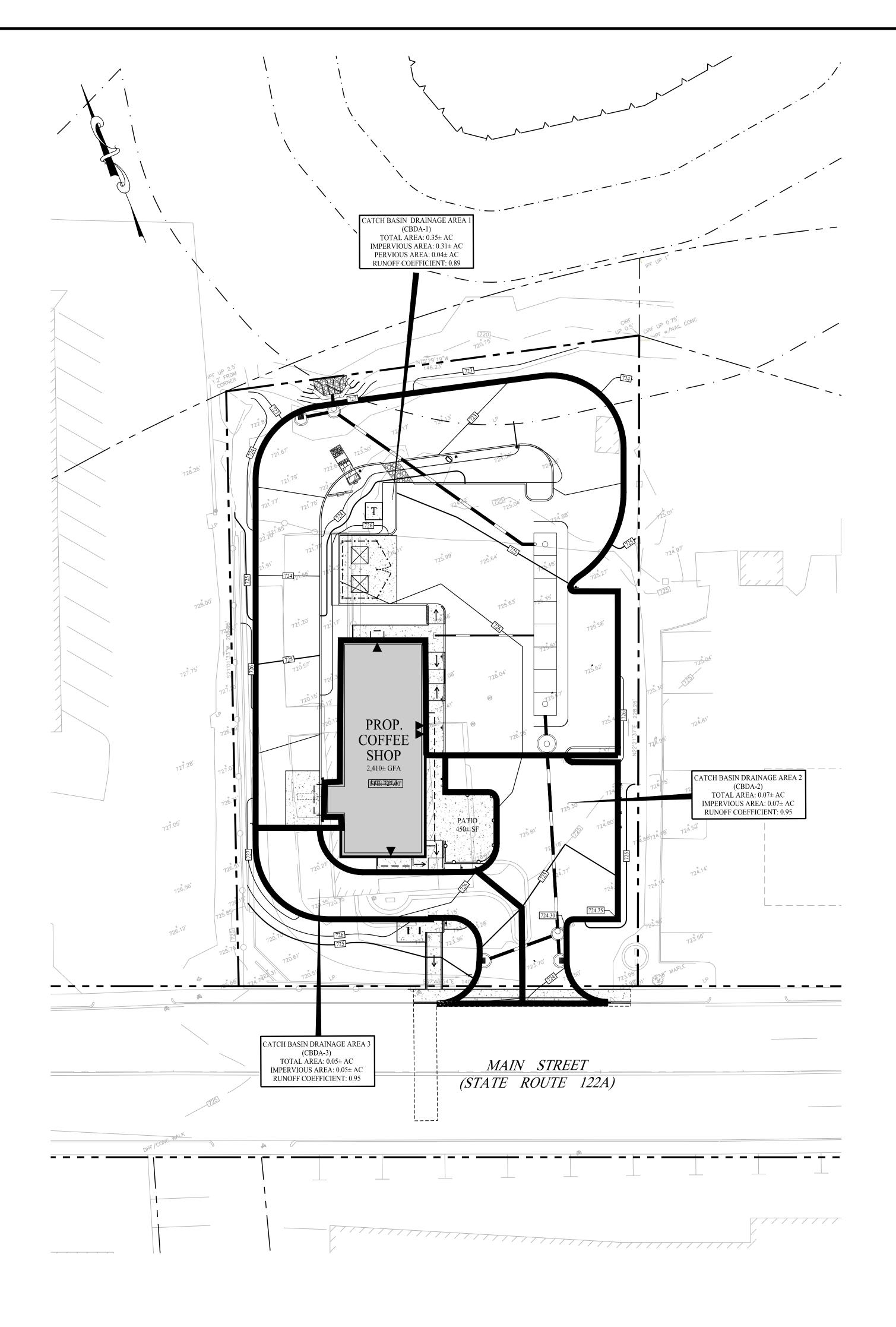
1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

- 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row




- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
- 5. Total TSS Removal = Sum All Values in Column D

	Location:	788 Main Street, Ho	olden, MA (Train 2)		
	А	В	С	D	E
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
neet	4-Foot Sump with Hooded Outlet	0.25	1.00	0.25	0.75
emoval Worksheet	Water Quality Unit	0.90	0.75	0.675	0.075
	Infiltration Basin	0.80	0.075	0.060	0.015
TSS Re Calculation					
Calo					
			SS Removal =		Separate Form Needs to be Completed for Each Outlet or BMP Train
	Prepared By:	Proposed Coffee Shop OSK 10/05/2023		*Equals remaining load from which enters the BMP	n previous BMP (E)


<u>Appendix D – Detailed Design Plans</u>

Existing Conditions Plan Prepared by Northeast Survey Consultants Drainage Area Map (DA-1) Catch Basin Drainage Area Map (CBDA-1) For more information regarding the Design Plans refer to the Permitting Plan Set, prepared by Solli Engineering, submitted in conjunction with this Report.

Feb 08, 2024 — 4:17pm Sam M:\SE Files\Project Data\2023\23204001 — 788 Main Street — Holden, MA\Cadd Data\2304001—DA—1.dwg

GENERAL NOTES

- 1. THESE PLANS ARE FOR PERMITTING PURPOSES ONLY AND ARE NOT FOR CONSTRUCTION. NO CONSTRUCTION OR DEMOLITION SHALL BEGIN UNTIL APPROVAL OF THE FINAL PLANS IS GRANTED BY ALL GOVERNING AND REGULATORY AGENCIES.
 2. ALL SITE WORK TO BE COMPLETED IN ACCORDANCE WITH ALL PERMITS, APPROVALS, AND CONDITIONS OF APPROVALS ISSUED BY THE TOWN OF HOLDEN
- FOR THIS PROJECT.
- 3. EXISTING SITE CONDITIONS AND BOUNDARY INFORMATION TAKEN FROM A PLAN TITLED "PLAN OF LAND", DATED AUGUST 22, 2023, SCALE: 1'=15', PREPARED BY NORTHEAST SURVEY CONSULTANTS.
- 3.1. THE HORIZONTAL DATUM IS NAD83 (MASS. MAINLAND).3.2. FIELD SURVEY BY EDM TOTAL STATION & RTK GPS IN AUGUST 2023. 3.3. THE VERTICAL DATUM IS NAVD88.
- 4. THE STORMWATER MANAGEMENT PLAN AND DESIGN IS INTENDED TO BE IN COMPLIANCE WITH THE MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION'S STORMWATER MANAGEMENT HANDBOOK AND THE CITY OF HOLDEN MASSACHUSETTS STORMWATER REGULATIONS.
- 5. STORMWATER RUNOFF ANALYSIS WAS CALCULATED USING THE SCS TR-55 METHODOLOGY.
- 6. BASED ON SOIL MAPPING PRODUCED BY THE USDA NATURAL RESOURCES CONSERVATION SERVICE & ON-SITE BORINGS PERFORMED BY THE APPLICANT, THE SITE IS LOCATED WITHIN AN AREA OF "HINKLEY LOAMY SAND". FOR THE PURPOSES OF STORMWATER ANALYSIS THE A HYDROLOGIC SOIL RATING OF "B" WAS UTILIZED.

LEGEND

·	

PROPERTY LINE RIGHT-OF-WAY LINE ADJOINING LOT LINE LIMIT OF DRAINAGE AREA FLOW PATH

Rev. #: I	Date	Description
Graphic Scale:		
20	0	20 40
· · · · · · · · · · · · · · · · · · ·	ISC ENG Monroe, CT 06468 e, Norwood, MA 0206	DILIS F: (203) 880-5455 T: (781) 352-8491 F: (203) 880-9695 F: (203) 880-9695 F: (203) 880-9695
Drawn By:	OSK	
Checked By:	CJB	
Approved By:	KMS	
Project #:	23204001	
Plan Date:	10/06/23	
Scale:	1" = 20'	Kevin Solli, P.E. MA 51952
Project:	PROP	OSED
(COFFE	E SHOP
RE	DEVE	LOPMENT
	788 MAI	N STREET
НО	LDEN, MA	SSACHUSETTS
Sheet Title:		Sheet #:
CATCH	I BASIN	
DRAI	NAGE	CBDA-1
AREA	MAP	

<u>Appendix E – Long-Term Operation & Maintenance</u>

Operation & Maintenance Manual

LONG-TERM OPERATION & MAINTENANCE MANUAL

For the Proposed:

Coffee Shop Redevelopment

Located At: 788 Main Street (Route 122A) Holden, Massachusetts 01520

Prepared On: October 6, 2023

Prepared For: Town of Holden

Prepared By:

11 Vanderbilt Avenue, Suite 240 Norwood, Massachusetts 02062 T: (781) 352-8491

Prepared For:

DDMNS Realty, LLC

166 South Boulevard, Unit C West Springfield, Massachusetts 01089 T: (413) 313-5067

TABLE OF CONTENTS

INTRODUCTION	.2
RESPONSIBILITY	.2
DOCUMENTATION	.2
MAINTENANCE PROGRAM	.3
SUBSURFACE STORMWATER SYSTEM	.3
HYDRODYNAMIC SEPARATOR UNIT	.4
DEEP SUMP CATCH BASIN	.4
SNOW REMOVAL	.5
EMEREGENCY SPILL CONTAINMENT	.5

INTRODUCTION

Solli Engineering (Solli) has prepared this Operations and Maintenance Manual in accordance with Standard 9 of the Massachusetts Stormwater Handbook. The Long-Term Operations and Maintenance (O&M) Manual, filed with the town of Holden, shall be implemented at the proposed Coffee Shop redevelopment at 788 Main Street (Route 122A) in Holden, Massachusetts to ensure that the stormwater management functions as designed. The owner possesses the primary responsibility for overseeing and implementing the O&M plan and assigning a Property Manager who will be responsible for the proper operation and maintenance of the stormwater structures. In case of transfer of property ownership, future property owners shall be notified of the presence of the stormwater management system and the requirements for proper implementation of the O&M plan. Included in the O&M plan identifying key components of the stormwater system as well as a log for tracking inspections & maintenance.

The stormwater management system protects and enhances the stormwater runoff water quality through the removal of sediment and pollutants, and source control significantly reduces the amount of pollutants entering the system. Preventive maintenance of the system will include a comprehensive source reduction program of regular vacuuming and litter removal, prohibitions on the use of pesticides and maintenance of designated waste and recycling. All inspections and maintenance shall be performed in accordance with the Massachusetts Stormwater Handbook and Stormwater Standards.

RESPONSIBILITY

The purpose of the Long-Term Operation and Maintenance (O&M) Manual is to ensure inspection of the system, removal of accumulated sediments, oils, and debris and implementation of corrective action and record keeping activities. The below O&M activities associated with the site will be performed by a Contract Operator for the scope of maintenance. The Contract Operator will be a professional engineer or other technical professional with expertise and experience with stormwater management facilities operation and maintenance.

The ongoing responsibility is the Owner, its successors, and assigns. Adequate maintenance is defined in this document as good working condition.

Responsibility for O&M	(to be transferred upor	on sale of property /	development).
Responsioning for Oam	10 be transferred upor	m suit of property/	ucreiopmenij.

Contact:	Danny Hannoush
Company:	DDMNS Realty, LLC.
Number:	413-313-5067
Address:	166 South Boulevard, Unit C
City, State:	West Springfield, Massachusetts 01089

DOCUMENTATION

An inspection and maintenance record log and schedule will be kept by the Owner or Property Manager summarizing inspections, maintenance, repairs, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. Inspection & Maintenance Logs will be kept on file at the on-site Property Management office.

MAINTENANCE PROGRAM

The Owner, Property Manager and maintenance staff will conduct the Operation and Maintenance program set forth in this document. The Owner or Property Manager will ensure that inspections and record keeping are timely and accurate, and that cleaning and maintenance are performed in accordance with the recommended frequency for each stormwater component. Inspection & Maintenance Log Forms shall include the date and the amount of the last significant storm event in excess of 1-inch of rain in a 24-hour period, physical conditions of the structures, depth of sediment in structures, evidence of overtopping or debris blockage and maintenance required of each structure. The following areas, facilities and measures will be inspected by the Owner or Property Manager and maintained as specified below. Identified deficiencies will be corrected. Accumulated sediments and debris will be properly handled and disposed of guidelines off-site. in accordance with local. state. and federal and regulations.

All inspections and maintenance performed shall be in accordance with specifications outlined in the Massachusetts Stormwater Handbook.

SUBSURFACE STORMWATER SYSTEM

Subsurface infiltration / detention systems are used widely for controlling the quantity of stormwater runoff as well as the quality where space is limited. Subsurface infiltration systems' performance varies by manufacturer and system design. The stormwater management system proposes the installation of a subsurface system incorporating 3.5' Retain-it chambers (Or approved equal). According to the Owners Maintenance Manual provided by Retain-It, the infiltration / detention chambers are "self-sufficient and operate without requiring any outside assistance, except for periodic inspection to verify optimal performance and maintenance for removal of collected pollutants." The chambers should be inspected periodically with a greater number of inspections to take place during the system start up (just after installation). To successfully maintain the design parameters the following will be required for upkeep:

Periodically:

- Inspector shall visually inspect the system to help identify issues of concern. The inspector should look for signs of slow flows, backed up water, visible oil, trash and debris or an excessive amount of sediment in the storage area.
- During periodic inspections the inspector should visibly inspect the outlet control structure for issues of concern.
- If sediment is observed to be causing issues of concern, a vacuum truck should be used to suck the accumulated sediments, oils and greases and trash and debris from the system.
- Sediments, trash, and debris shall be removed and disposed of in an approved manner.
- Any indications of hazardous material, determined by visual inspection, testing, smell or abnormality, should be reported and handled per appropriate regulations.

According to the Massachusetts Stormwater Handbook and Stormwater Standards a backup underdrain pipe can be installed beneath the infiltration basin to prevent the case of standing water problems.

For more information regarding the Retain-It Owners Maintenance Guide visit: <u>http://retain-it.com/library/retain-it-sms-owners-maintenance-guide.pdf</u>

HYDRODYNAMIC SEPARATOR UNIT

Hydrodynamic separators protect the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captures pollutants is essential to the continuous, long-term functioning of the separator. The units will capture and retain sediment and oil until the sediment and oil storage volumes are full to capacity. When sediment and oil storage capacities are reached, the structures will no longer be able to store removed sediment and oil.

The stormwater management system proposes to incorporate two (2) Contech water quality units. According to the Contech Guide Operation, Design, Performance and Maintenance, inspections shall take place at regular intervals to ensure optimum performance. At a minimum, inspections shall be performed twice a year (Ex.: spring & fall) however more frequent inspections may be required depending on several things one being severity of winter (excessive sanding/salting). The frequency of cleanout is determined in the field after installation. During the first year of operation, the units should be inspected regularly and then after, every six months (twice a year) to determine the rate of sediment and floatables accumulation. A simple probe can be used to determine the level of accumulated solids stored in the sump. This information should be recorded in the inspection logs. On the log it is important to note the date, location of structure (or identification), estimated volume of floatables, and depth of sediment. Securely replace the top of the structure and take down any safety equipment. Then notify the engineer of record for any irregularities in the structure's performance if any. The systems should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. Sediment and debris removal can be done manually or with approved sumpvac (or equal).

For more information regarding the CDS Guide Operation, Design, Performance and Maintenance visit: <u>https://www.conteches.com/Portals/0/Documents/Design%20Guides/CDSDesign%20Guide.pdf?ver=201</u> <u>8-05-16-083621-907</u>

DEEP SUMP CATCH BASIN

Deep sump catch basins are underground concrete structures which are designed to retain removed trash, debris, and coarse sediment from stormwater runoff and serve as temporary spill containment devices for floatables such as oil and greases prior to discharge into a storm sewer pipe. The functions of a deep sump catch basin include:

- A grate and/or vertical notch found in the curbing that allow stormwater to enter the structure while filtering out larger objects such as trash and leaves.
- A four-foot (minimum) sump below the invert of the storm sewer pipe provides an area for detention time which allows sands and other sediments to settle out of the runoff prior discharge.
- An attached hooded outlet, that prevents floatables and sediment from entering the storm sewer pipes.

At a minimum, deep sump catch basins and drain manholes shall be inspected quarterly (four times per year). Ideally, inspections should be conducted in the fall, at the end of the leaf-drop, in the spring following snowmelt and following heavy rain falls, defined as a storm event exceeding 1-inch of rain fall within a twenty-four-hour period to verify that inlet openings are not clogged by debris. Each structure should be cleaned whenever the depth of sediment deposits is greater than or equal to one half the depth of the sump from the bottom of the structure to the bottom of the lowest pipe invert. Structures shall be inspected for a buildup of sediments, oils, debris, cracks, breaks, or deformations. Any function of the catch basin and

drain manhole that is not in working order will be replaced with similar materials, as per detail, to prevent the storm sewer system from failing.

If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials, or other method and disposed in conformance with applicable state and federal regulations.

The catch basins shall be cleaned by means of handheld shovels, scallop shovel and/or vacuum truck. Vacuum truck may be required instead of shovels to avoid damage to structure. The grate opening shall be clear of any foreign or lodged object. If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials or other methods and salts used in the winter will be removed from the catch basin sumps in the early spring. Leaves, pine needles and branches brought down by autumn winds, rain, and cold weather will be removed from the catch basin sumps in the late fall. Collected sediment, debris and hydrocarbons will be properly disposed of per local, state and federal requirements.

Damaged Hoods should be replaced when noted by inspection.

SNOW REMOVAL

Snow accumulations removed from the driveway, parking areas and other impervious surfaces should be placed in landscape islands and designated snow storage areas. Designated snow storage areas are shown on the Site Layout Plan (Sheet 2.11). Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the following areas: on top of storm drain catch basins, in natural depressions and where sand and debris can directly get into the watercourse or within a detention / infiltration basin.

EMEREGENCY SPILL CONTAINMENT

The Owner, along with the on-site Property Manager is responsible for educating staff and informing tenants on the environmental benefits associated with the use of pavement at the site. Staff must be trained, and tenants informed via the community website as to the proper spill prevention control and response procedures should a spill occur on the pavement surface. Proper spill control products, such as a granular dry absorbent, must be kept on-site at the property management office in a clean, dry chemical and corrosion resistant container.

A spill of greater than 10 gallons of oil or a spill of any quantity that has reached a surface water, into a sewer, storm drain, ditch, or culvert leading to a surface water, is immediately reported to one or more municipal, state, or federal authority. In the event of a hazardous waste spill on-site, the following protocol should be followed.

- If it is safe to do so, maintenance staff or tenants detecting an oil spill should immediately stop the release and use available materials to prevent the spread of oil.
- If there is a potentially flammable, toxic, or explosive condition, evacuate the vicinity of the spill.
- If it's believed that a reportable or dangerous condition exists, immediately call your local Fire Department to notify them of the release.
- If it is believed that a reportable condition exists, immediately call the Massachusetts Department of Environmental Protection (DEP) to notify them of the release.

- Call the DEP Emergency Response Section toll free statewide number, 1-888-304-1133. Be prepared to provide the following information to the DEP and the Fire Department:
 - Identity of the caller
 - Contact phone number Location of the spill
 - Type of product spilled
 - Approximate quantity or product spilled Extent of actual and/or potential water pollution
 - Date and time of spill
 - Cause of spill
 - Contact a Licensed Site Professional (LSP) to assist in further handling of the material(s) and DEP.

		Tit	le:				Inpsection #:		
		Location:					Project #:		
							Field Date:		
INSPECTION & MAINTENANCE LOG									
Name(s) & Title(s) of Individual(s) performing inspection:									
	inspection:				-				
	nspection:								
☐ Monthly ☐ Quarterly ☐ Biannually ☐ Annually ☐ Emergency									
Weather (during inspection)									
□ Clear □ Cloudy □ Rain □ Snow □ Sunny □ Windy □ Fog									
Other:									
Time of I	nspection:					Temp. during inspe	ction: °F		
	Start Time:	a.m.	End	l Time:		a.m. Precip. since last in	spection: "		
				Site Spec	cific BN	AP's	-		
#	BMP	Main	itenance	Required		Corrective A	ction Needed & Notes		
1			Yes		No				
2			Yes		No				
3			Yes		No				
4			Yes		No				
5			Yes		No				
6			Yes		No				
7			Yes		No				
8			Yes		No				
9			Yes		No				
10			Yes		No				
			Overa	all Site Mai	ntenan	ce Concerns			
	BMP/Activity	Main	tenance	Required		Corrective A	ction Needed & Notes		
	arge points & receiving ee of any sediment deposits?		Yes		No				
Are storm working?	a drain inlets properly		Yes		No				
	itter from site areas & placed in covered s?		Yes		No				
What is th infiltratio	ne level of sediment within n basin?		Yes		No				
	ne level of sediment within dynamic separators?		Yes		No				
within the	ne levels of oil/grit/trash e infiltration basin or amic separators?		Yes		No				
(Other)			Yes		No				
Inspector	(s) Signature(s):								